Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.19/2502
Título: A Novel Memory-Efficient Fast Algorithm for 2-D
Autor: Wang, Huiyuan
Vieira, José
Jesus, Bruno
Duarte, Isabel
Ferreira, Paulo
Palavras-chave: Compressed sensing
2-D transform
Image reconstruction
Imaging sampling
Data: Jun-2010
Editora: IEEE
Resumo: The basic theories of compressed sensing (CS) turn around the sampling and reconstruction of 1-D signals. To deal with 2-D signals (images), the conventional treatment is to convert them into1-D vectors. This has drawbacks, including huge memory demands and difficulties in the design and calibration of the optical imaging systems. As a result, in 2009 some researchers proposed the concept of compressed imaging (CI) with separable sensing operators. However, their work is only focused on the sampling phase. In this paper, we propose a scheme for 2-D CS that is memory- and computation-efficient in both sampling and reconstruction. This is achieved by decomposing the 2-D CS problem into two stages with the help of an intermediate image. The intermediate image is then solved by direct orthogonal linear transform and the original image is reconstructed by solving a set of 1-D l1-norm minimization sub-problems. The experimental results confirm the feasibility of the proposed scheme.
Peer review: yes
URI: http://hdl.handle.net/10400.19/2502
DOI: 10.1109/WCICA.2010.5553848
ISBN: 978-1-4244-6712-9
Aparece nas colecções:ESTGV - DMAT - Artigos publicados em revista científica (Indexados à ISI)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
WCICA-2010.pdf693,44 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.