Original article

Long-term treatment with chaethomellic acid A reduces glomerulosclerosis and arteriolosclerosis in a rat model of chronic kidney disease

António Nogueira, Helena Vala, Carmen Vasconcelos-Nóbrega, Ana Isabel Faustino-Rocha, Carlos André Pires, Aura Colaço, Paula Alexandra Oliveira, Maria João Pires

Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
Department of Therapeutic and Diagnostic Technologies, Polytechnic Institute of Bragança (IPB), Bragança, Portugal
Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal
Center for the Research and Technology of Agro-Environmental and Biological Science (CITAB), UTAD, Vila Real, Portugal
Center for Mathematics, UTAD, Vila Real, Portugal
Animal and Veterinary Research Center (CECAV), UTAD, Vila Real, Portugal

A R T I C L E I N F O

Grammar:

Wistar rats
5/6 renal mass reduction model
Chaethomellic acid A
Ha-Ras protein
Renal fibrosis

A B S T R A C T

The high prevalence of end-stage renal disease emphasizes the failure to provide therapies to effectively prevent and/or reverse renal fibrosis. Therefore, the aim of this study was to evaluate the effect of long-term treatment with chaethomellic acid A (CAA), which selectively blocks Ha-Ras farnesylation, on renal mass reduction-induced renal fibrosis. Male Wistar rats were sham-operated (SO) or subjected to 5/6 renal mass reduction (RMR). One week after surgery, rats were placed in four experimental groups: SO:SO rats without treatment (n = 13); SO + CAA: SO rats treated with CAA (n = 13); RMR:RMR rats without treatment (n = 14); and RMR + CAA:RMR rats treated with CAA (n = 13). CAA was intraperitoneally administered in a dose of 0.23 μg/kg three times a week for six months. Renal fibrosis was evaluated by two-dimensional ultrasonography and histopathological analysis. The kidneys of the RMR animals treated with CAA showed a significantly decrease in the medullary echogenicity (p < 0.05) compared with the RMR rats that received no treatment. Glomerulosclerosis and arteriolosclerosis scores were significantly lower (p < 0.001) in the RMR + CAA group when compared with the RMR group. There were no significant differences in interstitial fibrosis, interstitial inflammation and tubular dilatation scores between the RMR + CAA and RMR groups. These data suggest that CAA can be a potential future drug to attenuate the progression of chronic kidney disease.

1. Introduction

Chronic kidney disease (CKD) is an important challenge for health-care systems worldwide [1]. The natural course of the CKD is to progress towards end-stage renal disease (ESRD) and death, unless dialysis or transplant is implemented [2]. Regardless of the initial cause, development of renal fibrosis is the hallmark of most progressive CKD [3]. Therefore, targeting the components of the fibrogenic pathways can be a therapeutic approach to inhibit or slow the progression of CKD to ESRD.

The Ras proteins – small monomeric GTPase of 21 kDa – are important mediators in the development of renal fibrosis [4–8] and thereby could be a potential therapeutic target against fibrotic nephropathies. These proteins are located in different plasma-membrane microdomains and subcellular compartments where activate several signalling pathways. The best characterized signalling pathways are: the Ras/Raf/MEK-ERK1/2, which is responsible for the induction of several cellular responses such as cell growth, differentiation and apoptosis; and the Ras/PI3 K/Akt, which is implicated in regulation of cell metabolism, cell motility and promotion of cell survival protecting cells from apoptosis [9–11]. Activation of these signalling pathways has been reported as mediators in renal fibrosis [4,7,8].
There are three closely related major isoforms of Ras proteins: Harvey (Ha)-, Kirsten (Ki)-, and neural (N)-Ras, which are expressed in mammalian cells and have different biological effects [9,12–14], namely in fibroblasts biology and fibrotic processes [6,15–17]. It has been reported that depletion of Ha-Ras isoform in cultured fibroblasts obtained from Ha-Ras knock-out (KO) mice up-regulates extracellular matrix proteins (ECM) synthesis and mediates proliferation and migration by modulating PI3 K/Akt and MEK/ERK activation [16,17]. In an in vivo study, fibrosis was lower in H-Ras KO than in wild type mice after unilateral ureteral obstruction (UUO) [4]. Therefore, inhibition of Ha-Ras isoform could be used as a potential therapeutic strategy to reduce fibrosis development.

Chaetomelic acid A (CAA) has been identified as a highly specific inhibitor of farnesyl transferase [18], which selectively blocks Ha-Ras farnesylation [19]. Sabbatini et al. [20] have demonstrated that pretreatment with CAA of human renal proximal tubular cells or human umbilical vein endothelial cells significantly reduced apoptosis. The same researchers have also observed that in acute renal ischemia-reperfusion injury (IRI) model in rats, CAA administration preserves both renal function and histological damage [20,21]. Furthermore, in a rat model of excytotoxic lesion, CAA treatment increased the intracellular concentration of inactive Ha-Ras, leading to a marked decrease of superoxide anion production [19]. In another in vivo study, CAA administration reduced renal damage after UUO in mice [7]. However, up to now, all the studies performed on the effect of CAA in renal fibrosis have been performed in vitro or in rapid models of renal fibrosis such as UUO.

The 5/6 renal mass reduction (RMR) model has been widely used to study CKD. In this model, the development of renal fibrosis is characterized by the progressive development of glomerulosclerosis, tubulo-interstitial fibrosis and vascular sclerosis, leading to ESRD [22,23]. Thus, in this study we aimed to evaluate the effect of long-term treatment with CAA on renal fibrosis in rats with RMR, a model similar to renal fibrosis observed in CKD [24].

2. Materials and methods

2.1. Animals and experimental conditions

Sixty male Wistar rats (weighing approximately 135 g) were acquired from Harlan-Interfauna (Barcelona, Spain). Rats were housed in standard cages (Tecniplast, Buguggiate, Italy) with corncob for bedding (Mucedola, Milan, Italy) in a controlled room: 12/12 h light-dark cycle, temperature (23 ± 2 °C) and humidity (50 ± 10%); animals were fed with a standard rat chow (Mucedola®, Milan, Italy) and water ad libitum. All experimental procedures followed the European (European Directive 2010/63/EU) and National (Decree-Law 113/2013) legislation on the protection of the animals used for scientific purposes.

2.2. Experimental design

After seven weeks of acclimatization, rats (weighing 359 to 402 g) were sham-operated (SO) or submitted to RMR. All surgical procedures were carried out under general anaesthesia (ketamine/xylazine, 70/10 mg/kg; intraperitoneally) and aseptic conditions. The animals assigned to the RMR groups (n = 34) were subjected to 5/6 RMR by surgical resection through a midline laparotomy, as described previously [25]. The right kidney was exposed, decapsulated and removed. Then, the left kidney was exposed, decapsulated and both the upper and lower poles (two thirds of the left kidney) were resected. Excised kidney and poles were weighed immediately after removal. The sham-operated group rats (n = 26) underwent the same abdominal incision and manipulation of the right and the left kidneys without removal of renal mass. Special care was taken to prevent damage to the adrenal glands during the surgeries. The percentage of renal tissue removed was calculated based on the removed tissue, assuming that the right and left kidneys had equal weights. Two days after renal mass reduction, serum creatinine was measured (Daytona® Rx, Randox). Rats weights were recorded weekly. Animals were daily observed to assess their general health and mortality.

One week after surgery surviving animals (n = 53) were distributed into four groups: SO, SO rats receiving no treatment (n = 13); SO + CAA, SO rats receiving CAA treatment (n = 13); RMR, RMR rats receiving no treatment (n = 14); RMR + CAA, RMR rats receiving CAA treatment (n = 13). Rats from SO groups were distributed randomly and the animals from RMR groups were distributed according to the serum creatinine concentrations and the percentage of the removed renal tissue to ensure equal reduction in renal mass. CAA was intraperitoneally administered (0.23 μg/Kg; Santa Cruz Biotechnology, California, USA) [21] three times a week for six months.

2.3. Ultrasonographic evaluation

Six months after the surgical procedure, in the left kidney of each animal was evaluated the mean cortical and medullary echogenicity by ultrasonography using two-dimensional ultrasonography (B mode) as reported previously by Nogueira et al. [26].

2.4. Renal function assessment

Blood and urine samples were collected at the sixth month as we have previously described [27]. Plasma creatinine, urinary creatinine and proteinuria were measured using a chemistry analyser (Daytona® Rx, Randox) as per manufacturers’ instructions. Creatinine clearance was calculated according to standard formula [Uc x V/Pc, where Uc = urine creatinine (mg/dl), V = urine volume (ml/min/100 g body weight) and Pc = plasma creatinine (mg/dl)].

2.5. Animals’ sacrifice

Six months after the surgery, surviving animals were anesthetized with isoflurane. Systolic blood pressure (SBP) was measured through femoral artery catheterization as we have previously described [27]. After that, the rats were sacrificed using an overdose of anaesthesia followed by exsanguination by cardiac puncture as indicated by the Federation of European Laboratory Animal Science Associations [28]. A complete necropsy was performed, either the remnant kidney from RMR rats or both kidneys from SO rats were removed, weighed and examined macroscopically. Relative left kidney weights were calculated as the ratio of the left kidney weight to the rats’ total body weight [29].

2.6. Renal fibrosis evaluation

Samples were fixed in neutral buffered formalin 10%, embedded in paraffin wax, by routine methods, and 2 μm thick sections, including renal cortex and medulla, were stained for routine histopathological diagnosis with Haematoxylin and Eosin (HE), Mason’s trichrome and Reticulin special stains. Renal fibrosis was evaluated under light microscopy by two different researchers blindly and scored as previously reported by Asaba et al. [30]: glomerulosclerosis (0: normal; 1: matrix expansion or sclerosis less than 25%; 2: 26–50%; 3: 51–75%; and 4: more than 75%); interstitial fibrosis (0: normal; 1: mild fibrosis around vasculature; 2: mild fibrosis around tubules; 3: moderate fibrosis with tubular casts or tubular damage; and 4: severe fibrosis with cell infiltration) and arteriolar sclerosis (0: normal; 1: medial thickening; 2: segmental hyalinosis; 3: global hyalinosis; and 4: luminal occlusion with thrombus or infiltrating cells). The interstitial inflammation (presence of aggregates of lymphocytes and neutrophils in the interstitium) and the tubular dilatation (significant increase in luminal diameter, more than two folds, associated with flattening of the epithelial lining) were assessed according to Moubarak et al. [31] (0: not present; 1: minimal damage with rare and small foci; 2: mild damage
with few and small foci; and 3: moderate damage with frequent and moderately sized foci). The average of each score was calculated for each rat.

2.7. Statistical analysis

Data were analysed with SPSS® (version 23 for Windows; IBM Corp., Armonk, NY, USA). Results are presented as mean ± standard error (SE). The normality of the data was checked with the Shapiro-Wilk test. Statistical differences between groups were assessed by one-way analysis of variance (ANOVA) for independent samples, followed by Tukey’s HSD post hoc tests. Differences between groups were considered statistically significant if \(p < 0.05 \).

3. Results

3.1. General data and renal function

During this experimental study, two animals from RMR group and five animals from RMR + CAA group died. However, in the RMR group treated with CAA, the rats died only from the fifth month after RMR. Necropsies were performed on all the animals that died and were not seen macroscopic changes in the kidneys, bladder, heart, lungs, liver and spleen. However, in the last measurements made before the death of the animals they had low body weights, high levels of plasma creatinine, low values of creatinine clearance and an intense proteinuria, indicating a severe renal failure that possibly was the cause of these animals’ death. The data from these animals were not included in the final data analysis and the size of the groups was reduced to 12 animals in RMR group and 8 animals in RMR + CAA group. At end of experimental protocol (6 months), body weight was lower in the animals that underwent RMR when compared with the sham-operated control rats; however, only the RMR + CAA group showed a significant decrease in body weight when compared with the sham-operated untreated group (\(p < 0.05 \)). As expected, RMR led to hypertrophy of the remnant kidney. The left kidney weight and left kidney weight/body weight ratio in RMR rats were significantly higher compared to the weight of the intact kidney in sham-operated control ones (\(p < 0.05 \)). Also, as expect, in RMR rats the values of SBP was significantly higher compared with sham-operated control rats (\(p < 0.05 \)); and rats from RMR groups showed clinical signs of CKD characterized by significant re-duction in creatinine clearance and significant increase in urinary protein loss in comparison to sham-operated controls rats (\(p < 0.05 \)) (Table 1).

3.2. Kidney echogenicity

Renal echogenicity was evaluated in the cortex and medulla of the left kidney in all experimental groups at the end of the study. Representative ultrasonographic images of the cortex and medulla of the left kidney from all experimental groups are shown in Fig. 1. The echogenicity of cortex and medulla was higher in both RMR groups when compared with sham-operated control groups (\(p < 0.05 \)). The CAA administration decreased the cortical and medullary echogenicity in RMR rats, however only with statistically significance for medullary echogenicity (\(p < 0.05 \)) (Fig. 2).

3.3. Histopathological studies

The results of the evaluation of glomerulosclerosis, interstitial fibrosis, arteriolosclerosis, interstitial inflammation and tubular dilatation are given in Table 2; and the distribution by different grades of severity in these histological lesions for all experimental groups can be seen in Table 3. Rats from SO groups presented no kidney histological changes: kidney tissue displayed a normal morphology with intact glomeruli and tubules (Fig. 3a–f), although some animals showed minimal to mild interstitial inflammation (Table 3). The RMR rats that received no treatment showed severe glomerulosclerosis, interstitial fibrosis, interstitial inflammation, arteriolosclerosis and tubular dilatation (Tables 2 and 3; Fig. 3g–i). In the RMR rats that received CAA, the severity of glomerulosclerosis and arteriolosclerosis was significantly reduced compared with RMR rats that received no treatment. The degree of interstitial fibrosis, interstitial inflammation and tubular dilatation was also reduced in the RMR rats that received CAA compared with the RMR rats that received no treatment; however, these differences were not statistically significant (Tables 2 and 3; Fig. 3j–l).

4. Discussion

Development of renal fibrosis is the hallmark of most progressive CKD, regardless of its primary aetiology [3]. Therefore, treatment strategies aimed at preventing or slowing its devastating sequelae and progression to ESRD are of greatest importance.

Some studies highlight the importance of Ha-Ras isoform in the development of fibrosis [4,16,17]. Therefore, we have evaluated the effect of CAA, which selectively blocks Ha-Ras farnesylation [19], on renal fibrosis. To date, relatively few studies have assessed the effects of the CAA in experimental models of kidney diseases [7,20,21,27]. To our knowledge this is the first study that evaluated the effect of long-term CAA treatment on renal fibrosis in rats with progressive renal disease. In the present study, we have demonstrated that CAA (0.23 μg/Kg, three times a week, for six months) attenuate renal fibrosis, particularly glomerulosclerosis. Our results confirm the capability of CAA to reduce renal fibrosis observed in the IRI and UUO rodent models by Sabbatini et al. [20,21] and Rodriguez-Peña et al. [7], respectively.

In most patients, CKD progresses to an end point with common histological features characterized by accumulation of ECM in glomeruli and interstitium, which leads to generalized fibrosis and tubular atrophy [32]. Therefore, the acceptable animal model for the study of renal fibrosis should provide the development of glomerulosclerosis and

| Table 1
<p>| Body weight, left kidney weight, left kidney weight/body weight ratio, systolic blood pressure, creatinine clearance and proteinuria at the end of the experimental protocol (6 months) (mean ± standard error). |</p>
<table>
<thead>
<tr>
<th>SO (n = 13)</th>
<th>SO + CAA (n = 13)</th>
<th>RMR (n = 12)</th>
<th>RMR + CAA (n = 8)</th>
<th>(p^{1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>560 ± 16 (a)</td>
<td>550 ± 10 (b)</td>
<td>516 ± 13 (a)</td>
<td>503 ± 12 (b)</td>
</tr>
<tr>
<td>Left kidney weight (g)</td>
<td>1.35 ± 0.03 (a)</td>
<td>1.29 ± 0.03 (a)</td>
<td>2.32 ± 0.14 (b)</td>
<td>1.97 ± 0.12 (b)</td>
</tr>
<tr>
<td>Left kidney weight/body weight ratio (%)</td>
<td>0.24 ± 0.01 (a)</td>
<td>0.24 ± 0.01 (a)</td>
<td>0.45 ± 0.03 (b)</td>
<td>0.39 ± 0.03 (b)</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>148.22 ± 6.36 (a)</td>
<td>146.00 ± 5.32 (a)</td>
<td>202.22 ± 9.61 (b)</td>
<td>184.29 ± 9.79 (b)</td>
</tr>
<tr>
<td>Creatinine clearance (ml/min)</td>
<td>1.56 ± 0.04 (a)</td>
<td>1.45 ± 0.09 (a)</td>
<td>0.73 ± 0.10 (b)</td>
<td>0.92 ± 0.11 (b)</td>
</tr>
<tr>
<td>Proteinuria (g/day)</td>
<td>0.105 ± 0.006 (a)</td>
<td>0.117 ± 0.09 (a)</td>
<td>3.167 ± 0.410 (b)</td>
<td>2.467 ± 0.758 (b)</td>
</tr>
</tbody>
</table>

\(a,b \) Groups with different letters were considered statistically different: \(p < 0.05 \) in the Tukey HSD post hoc tests. SO: sham-operated rats; SO + CAA: sham-operated rats treated with chaetominic acid A; RMR: rats with 5/6 renal mass reduction; RMR + CAA: rats with 5/6 renal mass reduction treated with chaetominic acid A.

\(^{1} \) Significance value of the ANOVA.
interstitial fibrosis to a comparable extent to what is observed in human medicine. One of the most commonly animal models used to study renal disease progression is the 5/6 RMR in rats, which we used to evaluate the effect of CAA on renal fibrosis.

In this animal model, the increase in the glomerular filtration rate and blood flow associated with glomerular hypertension is followed by progressive deterioration of renal function accompanied by severe proteinuria and by structural renal changes such as glomerulosclerosis, tubulointerstitial fibrosis and vascular sclerosis [22,23]. In this study, after six months of RMR rats showed typical features of CKD: systemic hypertension, renal failure, proteinuria and renal fibrosis, which proved that RMR had been successfully performed.

In the present study, no deaths were observed in SO groups. However, among the RMR groups, the mortality was higher in the rats...
treated with CAA, despite the deaths had occurred only after the fifth month after RMR. According to Qian et al. [33], CAA has a reduced off-target toxicity relative to others farnesyltransferase inhibitors. In fact, as we have previously discussed [27], we did not observe adverse effects after the administration of CAA to rats. However, possibly chronic administration of CAA (0.23 g/kg three times a week) may have some toxicity in rats with CKD, while in healthy animals, administration of CAA is innocuous.

Renal fibrosis was evaluated by ultrasonography and histopathological analysis. Ultrasonography is a real-time imaging technique, non-invasive and non-nephrotoxic [34]. An increase of renal echogenicity is considered an indicator of renal fibrosis [35]. In fact, we have previous observed that the cortical and medullary echogenicity is a good marker of fibrosis in the 5/6 RMR model [26]. In this study, the kidneys of RMR animals treated with CAA showed a decrease in the cortical and medullary echogenicity compared with RMR rats that received no treatment; however, the difference was only statistically significant for medullary echogenicity. So, the results obtained by ultrasonography suggest that CAA has a beneficial effect on renal fibrosis. These results are in agreement with those obtained in histopathological studies, in which we observed that in comparison with RMR group, the kidneys from RMR + CAA group showed significantly reduced glomerulosclerosis and arteriosclerosis. Kidneys from RMR + CAA group also exhibited less interstitial fibrosis, interstitial inflammation and tubular dilatation.

Histopathological studies of renal tissue after RMR reveal the presence of three phases: rapid hypertrophic phase (2 to 4 weeks after RMR); phase with minimal histological changes (4 to 10 weeks); and the development of segmental glomerular sclerosis and tubulointerstitial fibrosis (after 10 weeks) [36]. Several authors have observed that during the different phases numerous molecules such as cytokines and growth factors [37–39], growth factor receptors [38], and extracellular matrix glycoproteins [40] are overexpressed in renal tissue. In this model, was also observed the activation of the Raf/MAPKs-ERK [41] and PI3 K/Akt [42] pathways – the mainly Ras signalling pathways. Activation of Ras and its signalling pathways Raf/MEK-ERK [41] and PI3 K/Akt [42] pathways – the mainly Ras signalling pathways. Activation of Ras and its signalling pathways Raf/MEK-ERK [41] and PI3 K/Akt has been described as mediators in progressive renal damage [43,44]. In a model of renal fibrosis induced by UUO, renal fibrosis was associated to Ras, ERK, and Akt activations, with main involvement of ERK1/2 in apoptotic events and Akt in proliferative and fibrotic

Table 2
Scores of renal fibrosis, inflammation and tubular dilatation at the end of the experimental protocol (6 months) (mean ± standard error).

<table>
<thead>
<tr>
<th>Scores</th>
<th>SO (n = 13)</th>
<th>SO + CAA (n = 13)</th>
<th>RMR (n = 12)</th>
<th>RMR + CAA (n = 8)</th>
<th>p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulosclerosis score</td>
<td>0.00 ± 0.00a</td>
<td>0.00 ± 0.00a</td>
<td>3.42 ± 0.19b</td>
<td>1.88 ± 0.35c</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Intestinal fibrosis score</td>
<td>0.00 ± 0.00a</td>
<td>0.00 ± 0.00a</td>
<td>3.25 ± 0.14b</td>
<td>2.17 ± 0.35b</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Arteriosclerosis score</td>
<td>0.00 ± 0.00a</td>
<td>0.00 ± 0.00a</td>
<td>1.83 ± 0.37b</td>
<td>0.50 ± 0.38b</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Intestinal inflammation score</td>
<td>0.31 ± 0.13b</td>
<td>0.15 ± 0.15b</td>
<td>3.00 ± 0.00b</td>
<td>2.50 ± 0.29b</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Tubular dilatation score</td>
<td>0.00 ± 0.00a</td>
<td>0.00 ± 0.00a</td>
<td>3.00 ± 0.00b</td>
<td>1.88 ± 0.35b</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

a,b: Groups with different letters were considered statistically different; p < 0.05 in the multiple comparisons by Dunn’s procedure. SO: sham-operated rats; SO + CAA: sham-operated rats treated with chaetomellic acid A; RMR: rats with 5/6 renal mass reduction; RMR + CAA: rats with 5/6 renal mass reduction treated with chaetomellic acid A.

1 Significance value of the Kruskal-Wallis Test.

Table 3
Distribution by different grades of severity in the different histological lesions.

<table>
<thead>
<tr>
<th>Glomerulosclerosis</th>
<th>SO (n = 13)</th>
<th>SO + CAA (n = 13)</th>
<th>RMR (n = 12)</th>
<th>RMR + CAA (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Normal</td>
<td>13 (100.0%)</td>
<td>13 (100.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>1. ≤25%</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>3 (37.5%)</td>
</tr>
<tr>
<td>2. 26–50%</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>1 (8.3%)</td>
<td>4 (50.0%)</td>
</tr>
<tr>
<td>3. 51–75%</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>5 (41.7%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>4. > 75%</td>
<td>0 (0.0%)</td>
<td>6 (50.0%)</td>
<td>1 (12.5%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interstitial fibrosis</th>
<th>SO (n = 13)</th>
<th>SO + CAA (n = 13)</th>
<th>RMR (n = 12)</th>
<th>RMR + CAA (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Normal</td>
<td>13 (100.0%)</td>
<td>13 (100.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>1. Mild fibrosis around vasculature</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>2 (25.0%)</td>
</tr>
<tr>
<td>2. Mild fibrosis around tubes</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>4 (50.0%)</td>
</tr>
<tr>
<td>3. Moderate fibrosis with tubular casts or tubular damage</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>9 (75.0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>4. Severe fibrosis with cell infiltration</td>
<td>0 (0.0%)</td>
<td>3 (25.0%)</td>
<td>1 (12.5%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arteriosclerosis</th>
<th>SO (n = 13)</th>
<th>SO + CAA (n = 13)</th>
<th>RMR (n = 12)</th>
<th>RMR + CAA (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Normal</td>
<td>13 (100.0%)</td>
<td>13 (100.0%)</td>
<td>1 (8.3%)</td>
<td>6 (75.0%)</td>
</tr>
<tr>
<td>1. Medial thickening</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>6 (50.0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>2. Segmental hyalinosis</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>3. Global hyalinosis</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>4 (33.3%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>4. Luminal occlusion with thrombus or infiltrating cells</td>
<td>0 (0.0%)</td>
<td>1 (8.3%)</td>
<td>6 (50.0%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intestinal inflammation</th>
<th>SO (n = 13)</th>
<th>SO + CAA (n = 13)</th>
<th>RMR (n = 12)</th>
<th>RMR + CAA (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Not present</td>
<td>9 (69.2%)</td>
<td>12 (92.3%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>1. Minimal with rare and small foci</td>
<td>4 (30.8%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>2. Mild damage with few and small foci</td>
<td>0 (0.0%)</td>
<td>1 (7.7%)</td>
<td>0 (0.0%)</td>
<td>2 (25.0%)</td>
</tr>
<tr>
<td>3. Moderate damage with frequent and moderately sized foci</td>
<td>0 (0.0%)</td>
<td>12 (100.0%)</td>
<td>5 (62.5%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tubular dilatation</th>
<th>SO (n = 13)</th>
<th>SO + CAA (n = 13)</th>
<th>RMR (n = 12)</th>
<th>RMR + CAA (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Not present</td>
<td>13 (100.0%)</td>
<td>13 (100.0%)</td>
<td>0 (0.0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>1 Minimal</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>2 Mild</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>4 (50.0%)</td>
</tr>
<tr>
<td>3 Moderate</td>
<td>0 (0.0%)</td>
<td>12 (100.0%)</td>
<td>2 (25.0%)</td>
<td></td>
</tr>
</tbody>
</table>

SO: sham-operated rats; SO + CAA: sham-operated rats treated with chaetomellic acid A; RMR: rats with 5/6 renal mass reduction; RMR + CAA: rats with 5/6 renal mass reduction treated with chaetomellic acid A.
Many growth factors are known to activate intracellular signalling pathways that converge on Ras activation, including transforming growth factor-β1 (TGF-β1) [9,10]. The production of TGF-β1, both by intrinsic renal cells and infiltrated inflammatory cells, plays a key role in the pathological deposition of extracellular matrix after damage to renal tissue [46]. There is a close relationship between TGF-β1, Ras signalling pathways and epithelial-to-mesenchymal transition (EMT). EMT plays an important role in the renal fibrosis [47,48]. Grande et al. [4] demonstrated in the UUO model performed in mice the relationship between H-Ras and EMT in the kidney and its contribution to the development of renal fibrosis. These authors observed that Ha-Ras deficiency reduces fibrogenesis, activation of Akt, the amount of activated myofibroblasts, and EMT inducers. It also impairs interstitial fibroblast proliferation and decreases TGF-β1-induced proliferation and motility in fibroblasts. CAA administration decreased Ras downstream signalling pathways, MAPK-ERK1/2 and PI3 K/Akt, as well as alpha-smooth muscle actin (α-SMA) accumulation (a marker for myofibroblasts) in UUO kidneys [7]. In addition, it has been reported that the inhibition of farnesylation by CAA inhibits Ras/ERK1/2 pathway and significantly reduces acute postischemic renal injury in rats [20]. Thus, through the modulation of Raf/MEK/ERK and PI3K-Akt pathways, CAA may have attenuated RMR-induced renal fibrosis.

In 5/6 RMR, the presence of infiltrated cells plays an essential role in the progression of renal parenchymal lesion [49,50]. An abnormal, persistent inflammatory response may lead to increased synthesis and deposition of ECM with subsequent fibrosis [51]. It was also observed that inflammation can induce EMT [52]. In this study, the interstitial inflammation score was higher in RMR group compared with RMR + CAA group, although this difference was not statistically significant. Therefore, this higher infiltration of inflammatory cells present in the kidney samples of animals belonging to the RMR group may have contributed to a much more pronounced development of renal fibrosis in this group.

Another potential mechanism responsible for the beneficial effects of CAA on renal fibrosis could involve the reduction of oxidative stress. Oxidative stress resulting in generation of reactive oxygen species (ROS), mainly in the form of superoxide and hydrogen peroxide, plays a significant role in the initiation and progression of renal disease [53,54]. NADPH oxidase has been identified as the enzyme system most responsible for superoxide generation by adventitial fibroblasts [55,56] and it is recognized as a key mediator of cell proliferation, matrix accumulation [57,58], and EMT [52] in renal disease. Activated Ha-Ras isoform increase intracellular levels of ROS via up-regulation of the plasma membrane NADPH oxidase [59–61]. CAA inhibits Ras/ERK1/2 pathway and protects human renal proximal tubular cells from oxidative stress-induced cell death [20]. Furthermore, CAA administration in rats, after brain damage induced by an excitotoxic stimulus, significantly reduced superoxide production [19]. Also, in our previous study [27], we have observed that CAA attenuates 5/6 RMR-induced oxidative stress in rats. Oxidative stress plays an important role in renal disease [54,55].

Fig. 3. Representative kidney sections from sham-operated rats (SO), sham-operated rats treated with chaetomellic acid A (SO + CAA), rats with 5/6 renal mass reduction (RMR) and rats with 5/6 renal mass reduction treated with chaetomellic acid A (RMR + CAA) stained with Haematoxylin and Eosin (HE), Masson’s trichrome and reticulin stain. SO group: a, b and c – normal kidney morphology (×200); SO + CAA: d, e and f – normal kidney morphology (×200); RMR: g – glomerulosclerosis (grade 4) (×200); h – glomerulosclerosis (grade 4) and arteriolosclerosis (arrow; grade 3) (×200); i – interstitial fibrosis (grade 3) (×200); and RMR + CAA: j – glomerulosclerosis (grade 2); note also the interstitial inflammation (grade 3) (×200); k – arteriolosclerosis (grade 0) (×200); l – interstitial fibrosis (grade 2) (×200).
injury induced by 5/6 RMR [62,63]. Thus, the reduction of oxidative stress by CAA may also have contributed to the decrease of renal fibrosis seen in the rats treated with CAA.

5. Conclusion

Under our experimental conditions, CAA (0.23 μg/Kg, three times a week, for six months) reduced renal fibrosis, mainly glomerulosclerosis and arteriolar sclerosis, in a rat model of CKD. Although further studies are necessary, the data of this study suggests that the inhibition of farnesyllation of Ha-Ras protein by CAA can be a possible and new therapeutic target to attenuate the progression of CKD. The precise mechanisms by which CAA prevents the progression of renal fibrosis cannot be elucidated by this study. However, on the basis of previous studies we can suggest that its protective effects on renal fibrosis observed in this study may be mainly based mainly on its ability to modulate Raf/MEK/ERK and PI3K-Akt pathways and consequently cell proliferation and ECM. In this study, the mortality was higher in the rats with CKD treated with CAA, although no adverse effects were observed in sham-operated treated rats. These data highlight the need for more studies on the CAA clinical toxicity and safety.

Conflicts of interest

None

Acknowledgments

This work is supported by: European Investment Funds by FEDER/ COMPETE/POCI-Operational Competitiveness and Internationalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT – Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013.

References

