Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Comprehensive Evaluation of Deepfake Detection Models: Accuracy, Generalization, and Resilience to Adversarial AttacksPublication . Abbasi, Maryam; ANTUNES VAZ, PAULO JOAQUIM; Silva, José; Martins, PedroThe rise of deepfakes—synthetic media generated using artificial intelli gence—threatens digital content authenticity, facilitating misinformation and manipu lation. However, deepfakes can also depict real or entirely fictitious individuals, leveraging state-of-the-art techniques such as generative adversarial networks (GANs) and emerging diffusion-based models. Existing detection methods face challenges with generalization across datasets and vulnerability to adversarial attacks. This study focuses on subsets of frames extracted from the DeepFake Detection Challenge (DFDC) and FaceForensics++ videos to evaluate three convolutional neural network architectures—XCeption, ResNet, and VGG16—for deepfake detection. Performance metrics include accuracy, precision, F1-score, AUC-ROC, and Matthews Correlation Coefficient (MCC), combined with an assessment of resilience to adversarial perturbations via the Fast Gradient Sign Method (FGSM). Among the tested models, XCeption achieves the highest accuracy (89.2% on DFDC), strong generalization, and real-time suitability, while VGG16 excels in precision and ResNet provides faster inference. However, all models exhibit reduced performance under adversarial conditions, underscoring the need for enhanced resilience. These find ings indicate that robust detection systems must consider advanced generative approaches, adversarial defenses, and cross-dataset adaptation to effectively counter evolving deep fake threats
- Enhancing Visual Perception in Immersive VR and AR Environments: AI-Driven Color and Clarity Adjustments Under Dynamic Lighting ConditionsPublication . Abbasi, Maryam; Silva, José; Martins, Pedro; ANTUNES VAZ, PAULO JOAQUIM; Silva, JoséThe visual fidelity of virtual reality (VR) and augmented reality (AR) environments is essential for user immersion and comfort. Dynamic lighting often leads to chromatic distortions and reduced clarity, causing discomfort and disrupting user experience. This paper introduces an AI-driven chromatic adjustment system based on a modified U-Net architecture, optimized for real-time applications in VR/AR. This system adapts to dynamic lighting conditions, addressing the shortcomings of traditional methods like histogram equalization and gamma correction, which struggle with rapid lighting changes and real-time user interactions. We compared our approach with state-of-the-art color constancy algorithms, including Barron’s Convolutional Color Constancy and STAR, demonstrating superior performance. Experimental results from 60 participants show significant improvements, with up to 41% better color accuracy and 39% enhanced clarity under dynamic lighting conditions. The study also included eye-tracking data, which confirmed increased user engagement with AI-enhanced images. Our system provides a practical solution for developers aiming to improve image quality, reduce visual discomfort, and enhance overall user satisfaction in immersive environments. Future work will focus on extending the model’s capability to handle more complex lighting scenarios.