Repository logo
 
Loading...
Profile Picture
Person

Pereira, José Luís da Silva

Search Results

Now showing 1 - 2 of 2
  • Evaluation of Tomato-Based Packing Material for Retention of Ammonia, Nitrous Oxide, Carbon Dioxide and Methane in Gas Phase Biofilters: A Laboratory Study
    Publication . Pereira, José L.S.; Perdigão, Adelaide; Marques, Francisco; Coelho, Catarina; Mota, Mariana; Fangueiro, David
    Biofilters are an effective air pollution control technology to break down gaseous contaminants and produce innocuous end products. This laboratory study aimed to evaluate a biofilter media, mainly composed by tomato waste, as packing material to reduce NH3, N2O, CO2 and CH4 losses from stored pig slurry. Three mixtures of packing materials, with and without oxalic acid, were arranged in treatments, namely: mixture of tomato waste, pine bark and agricultural compost; mixture of tomato waste and rice husk; tomato waste only. A control treatment (no biofilter) was also included. The experiments were conducted using a system of laboratory scale biofilters connected to jars filled with pig slurry and under a constant airflow rate. The gas concentrations were measured for 14 days and the physicochemical of the packing materials were assessed. Results showed that biofilter media mixtures had a potential for NH3 retention ranging from 51 to 77% and the addition of oxalic acid to these biofilters increased NH3 retention to 72–79%. Additionally, the biofilter media mixtures with and without oxalic acid showed a potential retention for CH4 (29–69%) but not for N2O, yet with no impact on the global warming potential. It can be concluded that tomato based biofilters had the potential to reduce gaseous emissions from slurry.
  • Greenhouse Gas Emissions and Ryegrass Yield after Application of Solid-Liquid Pig Slurry and Biochar to an Agricultural Soil
    Publication . Pereira, José Luís da Silva; Perdigão, Adelaide; Bonifácio, Gabriel; Figueiredo, Vitor; Marques, Francisco; Trindade, Henrique; Ferreira Wessel, Dulcineia
    Background: The application of animal slurry to the soil improves its quality, as manure contains many nutrients for plants. However, this could negatively impact the environment. Objective: This field study investigated the effects of the addition of biochar after the mechanical separation of Whole pig Slurry (WS) into Solid (SF) and Liquid Fractions (LF) on Greenhouse Gases (GHG) emissions (N2O, CO2, and CH4) and ryegrass (Lolium multiflorum Lam. cv magnum) yield. Methods: Biochar (1.0 kg m-2) was applied in plots alone or together with each of the three slurries (80 kg N ha-1) in a total of eight treatments with three replications, including just soil with and without biochar as controls. Soil properties, Greenhouse Gas (GHG) fluxes, and yield were measured during theautumn/winter growing season. Results: The results showed that the addition of biochar to these three slurries significantly increased the soil pH and showed no impact on the other physicochemical properties. The GHG emissions were not significantly different between treatments with and without biochar. The N use efficiency increased significantly in SF > WS > LF, whereas no differences were observed among these three slurries with and without biochar. Conclusion: It can be concluded that the addition of biochar combined with WS or SF/LF to sandy-loam soil appears to have no impact on GHG emissions and ryegrass yield during the autumn/winter season. Overall, this finding suggests that amounts higher than 1.0 kg m-2 of biochar combined with SF may need to be applied to soil to reduce GHG emissions and nitrate leaching and increase N use efficiency and crop yield