Repository logo
 
Publication

Nutrition Control System Based on Short-term Personal Demands

dc.contributor.authorCunha, Carlos
dc.contributor.authorP. Duarte, Rui
dc.contributor.authorOliveira, Rafael
dc.date.accessioned2024-05-27T10:56:01Z
dc.date.available2024-05-27T10:56:01Z
dc.date.issued2023
dc.description.abstractPersonalized nutrition considers an individual’s unique genetic, metabolic, and lifestyle factors to create a customized dietary plan tailored to their needs. People seeking to optimize their health and wellness through diet and lifestyle changes can benefit from technological advances in machine learning and deep learning approaches to create personalized models of nutritional requirements that override traditional food plans. These models will provide users with an unprecedented decision tool for informing them of the impact of specific food intake and exercise on their goals. This article presents the architecture, implementation, and preliminary results of a deep learning-based control system for nutrition. It allows users to understand the impact of their food and exercise immediate choices on their goals while reducing user interaction demands. Preliminary results have shown that it is possible to predict BMI (Body Mass Index) accurately within a time window of three days.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCunha, C., Duarte, P., & Oliveira, R. (2023). Nutrition Control System Based on Short-term Personal Demands. Procedia Computer Science, 224, 565–571. https://doi.org/10.1016/j.procs.2023.09.082pt_PT
dc.identifier.doi10.1016/j.procs.2023.09.082pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.19/8400
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.subjectDeep learningpt_PT
dc.subjectMachine Learningpt_PT
dc.subjectNutrition Controlpt_PT
dc.subjectPersonalized Nutritionpt_PT
dc.subjectGoal Predictionpt_PT
dc.titleNutrition Control System Based on Short-term Personal Demandspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceThe 20th International Conference on Mobile Systems and Pervasive Computing (MobiSPC) July 24-26, 2023, Halifax, Nova Scotia, Canadapt_PT
oaire.citation.endPage571pt_PT
oaire.citation.startPage565pt_PT
oaire.citation.titleProcedia Computer Sciencept_PT
oaire.citation.volume224pt_PT
person.familyNameCunha
person.familyNameMonteiro Amaro Duarte
person.givenNameCarlos
person.givenNameRui Pedro
person.identifier2081924
person.identifiergIYE8M4AAAAJ
person.identifier.ciencia-idD71F-FC65-1F07
person.identifier.ciencia-id211F-55A0-4B63
person.identifier.orcid0000-0002-2754-5401
person.identifier.orcid0000-0002-6819-0985
person.identifier.scopus-author-id39361170900
person.identifier.scopus-author-id14059938600
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication384f50cd-9e87-40bd-b610-58008e05bec1
relation.isAuthorOfPublicationd56c3162-80a4-4ade-810d-43bae4ee6d73
relation.isAuthorOfPublication.latestForDiscoveryd56c3162-80a4-4ade-810d-43bae4ee6d73

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1877050923011298-main.pdf
Size:
459.01 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: