Browsing by Author "Oliveira, Rafael"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Agile-based Requirements Engineering for Machine Learning: A Case Study on Personalized NutritionPublication . Cunha, Carlos; Oliveira, Rafael; Duarte, RuiRequirements engineering is crucial in developing machine learning systems, as it establishes the foundation for successful project execution. Nevertheless, incorporating requirements engineering approaches from traditional software engineering into machine learning projects presents new challenges. These challenges arise from replacing the software logic derived from static software specifications with dynamic software logic derived from data. This paper presents a case study exploring an agile requirement engineering approach popular in traditional software projects to specify requirements in machine learning software. These requirements allow reasoning about the correctness of software and design tests for validation. The absence of software specification in machine learning software is offset by employing data quality metrics, which are assessed using cutting-edge methods for model interpretability. A case study on personalized nutrition and physical activity demonstrated the adequacy of user stories and acceptance criteria format, popular in agile projects, for specifying requirements in the machine learning domain.
- Nutrition Control System Based on Short-term Personal DemandsPublication . Cunha, Carlos; P. Duarte, Rui; Oliveira, RafaelPersonalized nutrition considers an individual’s unique genetic, metabolic, and lifestyle factors to create a customized dietary plan tailored to their needs. People seeking to optimize their health and wellness through diet and lifestyle changes can benefit from technological advances in machine learning and deep learning approaches to create personalized models of nutritional requirements that override traditional food plans. These models will provide users with an unprecedented decision tool for informing them of the impact of specific food intake and exercise on their goals. This article presents the architecture, implementation, and preliminary results of a deep learning-based control system for nutrition. It allows users to understand the impact of their food and exercise immediate choices on their goals while reducing user interaction demands. Preliminary results have shown that it is possible to predict BMI (Body Mass Index) accurately within a time window of three days.