Browsing by Issue Date, starting with "2025-02-19"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Head-to-Head Evaluation of FDM and SLA in Additive Manufacturing: Performance, Cost, and Environmental PerspectivesPublication . Abbasi, Maryam; ANTUNES VAZ, PAULO JOAQUIM; Martins, Pedro; Silva, JoséThis paper conducts a comprehensive experimental comparison of two widely used additive manufacturing (AM) processes, Fused Deposition Modeling (FDM) and Stereolithography (SLA), under standardized conditions using the same test geometries and protocols. FDM parts were printed with both Polylactic Acid (PLA) and Acryloni trile Butadiene Styrene (ABS) filaments, while SLA used a general-purpose photopolymer resin. Quantitative evaluations included surface roughness, dimensional accuracy, ten sile properties, production cost, and energy consumption. Additionally, environmental considerations and process reliability were assessed by examining waste streams, recy clability, and failure rates. The results indicate that SLA achieves superior surface quality (Ra ≈ 2 µm vs. 12–13 µm) and dimensional tolerances (±0.05 mm vs. ±0.15–0.20 mm), along with higher tensile strength (up to 70 MPa). However, FDM provides notable ad vantages in cost (approximately 60% lower on a per-part basis), production speed, and energy efficiency. Moreover, from an environmental perspective, FDM is more favorable when using biodegradable PLA or recyclable ABS, whereas SLA resin waste is hazardous. Overall, the study highlights that no single process is universally superior. FDM offers a rapid, cost-effective solution for prototyping, while SLA excels in precision and surface finish. By presenting a detailed, data-driven comparison, this work guides engineers, product designers, and researchers in choosing the most suitable AM technology for their specific needs.