CERNAS - Artigo em revista científica, indexada ao WoS/Scopus
Permanent URI for this collection
Browse
Browsing CERNAS - Artigo em revista científica, indexada ao WoS/Scopus by Field of Science and Technology (FOS) "Ciências Naturais::Ciências da Terra e do Ambiente"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Life Cycle Assessment of Pig Production in Central Portugal: Environmental Impacts and Sustainability ChallengesPublication . Leite dos Santos, Lenise Maria; Domingos Ferreira, Miguel; Domingos, idalina; Oliveira Verónica; Rodrigues Carla; Ferreira António; Ferreira, José; MDPIPig farming plays a crucial socioeconomic role in the European Union, which is one of the largest pork exporters in the world. In Portugal, pig farming plays a key role in regional development and the national economy. To ensure future sustainability and minimize environmental impacts, it is essential to identify the most deleterious pig production activities. This study carried out a life cycle assessment (LCA) of pig production using a conventional system in central Portugal to identify the unitary processes with the greatest environmental impact problems. LCA followed the ISO 14040/14044 standards, covering the entire production cycle, from feed manufacturing to waste management, using 1 kg of live pig weight as the functional unit. The slurry produced is used as fertilizer in agriculture, replacing synthetic chemical fertilizers. Results show that feed production, raising piglets, and fattening pigs are the most impactful phases of the pig production cycle. Fodder production is the stage with the greatest impact, accounting for approximately 60% to 70% of the impact in the categories analyzed in most cases. The environmental categories with the highest impacts were freshwater ecotoxicity, human carcinogenic toxicity, and marine ecotoxicity; the most significant impacts were observed for human health, with an estimated effect of around 0.00045 habitants equivalent (Hab.eq) after normalization. The use of more sustainable ingredients and the optimization of feed efficiency are effective strategies for promoting sustainability in the pig farming sector.
- Olive Tree (Olea europaea) Pruning: Chemical Composition and Valorization of Wastes Through LiquefactionPublication . Domingos, idalina; Domingos Ferreira, Miguel; Ferreira, José; Esteves, Bruno; MDPIOlive tree branches (OB) and leaves (OL) from the Viseu region (Portugal) were studied for their chemical composition and liquefaction behavior using polyalcohols. Chemical analysis revealed that OL contained higher ash content (4.08%) and extractives, indicating more bioactive compounds, while OB had greater α-cellulose (30.47%) and hemicellulose (27.88%). Lignin content was higher in OL (21.64%) than OB (16.40%). Liquefaction experiments showed that increasing the temperature from 140 ◦C to 180 ◦C improved conversion, with OB showing a larger increase (52.5% to 80.9%) compared to OL (66% to 72%). OB reached peak conversion faster, and the optimal particle size for OB was 40–60 mesh, while OL performed better at finer sizes. OL benefited more from higher solvent ratios, whereas OB achieved high conversion with less solvent. FTIR analysis confirmed that acid-catalyzed liquefaction breaks down lignocellulosic structures, depolymerizes cellulose and hemicellulose, and modifies lignin, forming hydroxyl, aliphatic, and carbonyl groups. These changes reflect progressive biomass degradation and the incorporation of polyalcohol components, converting solid biomass into a reactive, polyol-rich liquid. The study highlights the distinct chemical and processing characteristics of olive branches and leaves, informing their potential industrial applications.
