Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Cork Liquefaction for Polyurethane Foam Prodution
    Publication . Esteves, Bruno; Dulyanska, Yuliya; Costa, Catarina; Vicente, Jose; Domingos, Idalina; Pereira, Helena; Lemos, Luis; Cruz-Lopes, Luísa
    Cork is one of the most important forest products in Portugal. The cork processing industry is highly resource-efficient, with the only residue, cork powder, which is too minor in quantity for agglomerate production. This work studied the usage of cork powder for the production of added-value products via polyol liquefaction. Liquefactions were performed in a reactor using a mixture of polyethylene glycol (PEG 400) and glycerol as solvents, which were catalyzed by the addition of sulphuric acid. Several cork-to-solvent ratios, reaction temperatures, and reaction times were tested. Polyurethane foams were prepared by combining polyol mixtures with a catalyst, surfactant, blowing agent, and polymeric isocyanate. Mechanical tests of the produced foams were conducted, and compressive modulus of elasticity and compressive stress at 10% deformation were determined. The results show that the best conditions for obtaining high liquefaction yields are as follows: 160 ºC for 1 h; glycerol-to-PEG 400 ratio of 1:9; cork-to-solvent ratio of 1:6; and 3% H2SO4 catalyst addition. The Fourier Transform Infrared (FTIR) spectra indicated that the lignocellulosic fractions of the cork were more selectively dissolved during acidified polyol liquefaction than the suberin. With liquefied cork powder using these optimized conditions, it is possible to produce polyurethane foams with desired properties.
  • Optimizing Douglas-fir bark liquefaction in mixtures of glycerol and polyethylene glycol and KOH
    Publication . Esteves, Bruno; Cruz-Lopes, Luísa; Ferreira, José; Domingos, Idalina; Nunes, Lina; Pereira, Helena
    The outer bark of Douglas-fir (Pseudotsuga menziesii) has a significant amount of cork tissue that may be an important source of chemicals derived from its natural polymers, suberin, cellulose, hemicelluloses and lignin. The present work focuses on the polyalcohol liquefaction of Douglas-fir bark with glycerol and polyethylene glycol (PEG) in order to obtain a liquid that can be further processed to other chemicals and products. The results show that Pseudotsuga bark can be liquefied in a significant percentage in presence of alkali. The best liquefaction yield was obtained with 6% KOH as agents. Although the use of a cosolvent is favorable, good liquefaction yields can also be obtained by glycerol alone. Lower temperatures are favorable as they lead to acceptable liquefaction yields. FTIR-ATR studies showed that all the structural compounds of the bark were attacked and depolymerized. The process tested has a high potential for generation of value-added products from liquefied Douglas-fir bark.