Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Pattern Recognition in Older Adults’ Activities of Daily Living
    Publication . Augusto, Gonçalo F.; P. Duarte, Rui; Cunha, Carlos; Matos, Ana
    Monitoring daily activities and behaviors is essential for improving quality of life in elderly care, where early detection of behavioral anomalies can lead to timely interventions and enhanced well-being. However, monitoring systems often struggle with scalability, high rates of false positives and negatives, and lack of interpretability in understanding anomalies within collected data. Addressing these limitations requires an adaptable, accurate solution to detect patterns and reliably identify outliers in elderly behavior data. This work aims to design a scalable monitoring system that identifies patterns and anomalies in elderly activity data while prioritizing interpretability to make well-informed decisions. The proposed system employs pattern recognition to detect and analyze outliers in behavior analysis, incorporating a service worker generated with Crontab Guru for automated data gathering and organization. Validation is conducted through statistical measures such as accumulated values, percentiles, and probability analyses to minimize false detections and ensure reliable performance. Experimental results indicate the system achieves high accuracy, with an occupancy probability across compartments and fewer outliers detected. The system demonstrates effective scalability and robust anomaly detection. By combining pattern recognition with a focus on interpretability, the proposed system provides actionable insights into elderly activity patterns and behaviors. This approach enhances the well-being of older adults, offering caregivers reliable information to support timely interventions and improve overall quality of life.
  • Enhancing quality of life: Human-centered design of mobile and smartwatch applications for assisted ambient living
    Publication . Augusto, Gonçalo F.; P. Duarte, Rui; Cunha, Carlos
    Background: Assisted ambient living interfaces are technologies designed to improve the quality of life for people who require assistance with daily activities. They are crucial for individuals to maintain their independence for as long as possible. To this end, these interfaces have to be user-friendly, intuitive, and accessible, even for those who are not techsavvy. Research in recent years indicates that people find it uncomfortable to wear invasive or large intrusive devices to monitor health status, and poor user interface design implies a lack of user engagement. Methods: This paper presents the design and implementation of non-intrusive mobile and smartwatch applications for detecting older adults when executing their routines. The solution uses an intuitive mobile application to set up beacons and incorporates biometric data acquired from the smartwatch to measure bio-signals correlated to the user’s location. User testing and interface evaluation are carried out using the User Experience Questionnaire (UEQ). Results: Six older adults participated in the evaluation of the interfaces. Results show that users found the interaction to be excellent in all the parameters of the UEQ in the evaluation of the mobile interface. For the smartwatch application, results vary from above average to excellent. Conclusions: The applications are intuitive and easy to use, and data obtained from integrating systems is essential to link information and provide feedback to the user.