Repository logo
 
Loading...
Profile Picture
Person

Pereira, José Luís da Silva

Search Results

Now showing 1 - 3 of 3
  • Assessment of Mineralized Nitrogen During Maize Growth Succeeding Different Winter Cover Crops in the Mediterranean Environment
    Publication . Perdigão, Adelaide; Pereira, José L.S.; Moreira, Nuno; Trindade, Henrique; Coutinho, João
    Background: Understanding soil nitrogen (N) dynamics is essential to find alternative N sources and improve N use efficiency in agriculture. Objective: The aim of this study was to assess N mineralization rates from residues of winter cover crops, during maize crop season, under Mediterranean conditions. Methods: A field experiment was carried out from May to September in central Portugal, with four replications, two sowing dates of cover crops (15/10/2011 and 29/11/2011) and three cover crops residues (balansa clover, ryegrass and yellow lupine) that were incorporated in the soil. Plots were cropped with local maize and net N mineralization was measured during the crop cycle, using soil cylinders placed inside micro-perforated polyethylene bags. Results and Discussion: Early sowing of the cover crops residues increased the NH4+ and NO3- contents in the soil. Yellow lupine residue had the highest rate of daily N mineralization (0.71 mg N kg-1 day-1). For all treatments, the highest mineralization rate was found in the last incubation period, ranging between 0.78 mg N kg-1 day-1 and 1.84 mg N kg-1 day-1, both for balansa clover, from the second and the first sowing date, respectively. Conclusion: The present study suggests that, under Mediterranean field conditions, cover crops residue of Italian ryegrass, balansa clover and yellow lupin can be used as a nitrogen source namely for sustainable maize crops.
  • Effect of Different Tannery Sludge Composts on the Production of Ryegrass: A Pot Experiment
    Publication . Perdigão, Adelaide; Marques, Francisco; Pereira, José L.S.
    Background: Tannery industry produces high amounts of nutrient rich sludges that can be used as organic fertilizers. Objective: The aim of this study was to evaluate the fertilizing potential of composted tannery sludge. Methods: A pot experiment was carried out with ryegrass (Lolium perenne L.) to test two different composts: 2.0 kg dry matter (DM) tannery fatty sludge + 1.5 kg DM sheep manure + 1.5 kg DM wheat straw (Compost 1) and 2.0 kg DM tannery sludge + 1.5 kg DM sheep manure + 1.5 kg DM wheat straw (Compost 2). Five treatments, with three replicates each, were assigned: Control (C); Compost 1 at 6 t (C1-6) and 12 t (C1-12) DM ha-1; Compost 2 at 6 t (C2-6) and 12 t (C2-12) DM ha-1. Each treatment was applied in a pot and mixed with 5 kg of sieved soil (<2 mm). Results: Results showed that production of DM ranged between 1.2 t DM ha-1 for C1-6 and 2.4 t DM ha-1 for C2-12. The highest B, Na and N levels in ryegrass was observed in C2-12, with 175 mg kg-1 DM, 9 g kg-1 DM and 30 g kg-1 DM, respectively. At the end of the experiment no differences were observed between treatments for C, N, P2O5, and K2O levels. Differences were observed at Zn level ranged between 101 mg kg-1 DM for C1-6 and 71 mg kg-1 DM for C2-12. Conclusion: The C2-12 treatment was the best because induces higher DM production and nutrients in ryegrass and without dangerous concentration of heavy metals in soil. Composted waste from the tannery industry is a good source of nutrients for agriculture.
  • Greenhouse Gas Emissions and Ryegrass Yield after Application of Solid-Liquid Pig Slurry and Biochar to an Agricultural Soil
    Publication . Pereira, José Luís da Silva; Perdigão, Adelaide; Bonifácio, Gabriel; Figueiredo, Vitor; Marques, Francisco; Trindade, Henrique; Ferreira Wessel, Dulcineia
    Background: The application of animal slurry to the soil improves its quality, as manure contains many nutrients for plants. However, this could negatively impact the environment. Objective: This field study investigated the effects of the addition of biochar after the mechanical separation of Whole pig Slurry (WS) into Solid (SF) and Liquid Fractions (LF) on Greenhouse Gases (GHG) emissions (N2O, CO2, and CH4) and ryegrass (Lolium multiflorum Lam. cv magnum) yield. Methods: Biochar (1.0 kg m-2) was applied in plots alone or together with each of the three slurries (80 kg N ha-1) in a total of eight treatments with three replications, including just soil with and without biochar as controls. Soil properties, Greenhouse Gas (GHG) fluxes, and yield were measured during theautumn/winter growing season. Results: The results showed that the addition of biochar to these three slurries significantly increased the soil pH and showed no impact on the other physicochemical properties. The GHG emissions were not significantly different between treatments with and without biochar. The N use efficiency increased significantly in SF > WS > LF, whereas no differences were observed among these three slurries with and without biochar. Conclusion: It can be concluded that the addition of biochar combined with WS or SF/LF to sandy-loam soil appears to have no impact on GHG emissions and ryegrass yield during the autumn/winter season. Overall, this finding suggests that amounts higher than 1.0 kg m-2 of biochar combined with SF may need to be applied to soil to reduce GHG emissions and nitrate leaching and increase N use efficiency and crop yield