Repository logo
 
Publication

Intrusion and anomaly detection for the next-generation of industrial automation and control systems

dc.contributor.authorRosa, Luis
dc.contributor.authorCruz, Tiago
dc.contributor.authorFreitas, Miguel Borges de
dc.contributor.authorQuitério, Pedro
dc.contributor.authorHenriques, João
dc.contributor.authorCaldeira, Filipe
dc.contributor.authorMonteiro, Edmundo
dc.contributor.authorSimões, Paulo
dc.date.accessioned2023-07-04T09:12:06Z
dc.date.available2023-07-04T09:12:06Z
dc.date.issued2021-01
dc.date.updated2023-06-06T18:05:58Z
dc.description.abstractThe next-generation of Industrial Automation and Control Systems (IACS) and Supervisory Control and Data Acquisition (SCADA) systems pose numerous challenges in terms of cybersecurity monitoring. We have been witnessing the convergence of OT/IT networks, combined with massively distributed metering and control scenarios such as smart grids. Larger and geographically widespread attack surfaces, and inherently more data to analyse, will become the norm. Despite several advances in recent years, domain-specific security tools have been facing the challenges of trying to catch up with all the existing security flaws from the past, while also accounting for the specific needs of the next-generation of IACS. Moreover, the aggregation of multiple techniques and sources of information into a comprehensive approach has not been explored in depth. Such a holistic perspective is paramount since it enables a global and enhanced analysis enabled by the usage, combination and aggregation of the outputs from multiple sources and techniques. This paper starts by providing a review of the more recent anomaly detection techniques for SCADA systems, focused on both theoretical machine learning approaches and complete frameworks. Afterwards, it proposes a complete framework for an Intrusion and Anomaly Detection System (IADS) composed of specific detection probes, an event processing layer and a core anomaly detection component, amongst others. Finally, the paper presents an evaluation of the framework within a large-scale hybrid testbed, and a comparison of different anomaly detection scenarios based on various machine learning techniques.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.future.2021.01.033pt_PT
dc.identifier.eid2-s2.0-85100501706
dc.identifier.slugcv-prod-2148059
dc.identifier.urihttp://hdl.handle.net/10400.19/7839
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectIACSpt_PT
dc.subjectIndustrial control systemspt_PT
dc.subjectSCADApt_PT
dc.subjectCybersecuritypt_PT
dc.subjectCritical infrastructure protectionpt_PT
dc.subjectNetwork anomaly detectionpt_PT
dc.subjectIntrusion detectionpt_PT
dc.subjectEvent processingpt_PT
dc.titleIntrusion and anomaly detection for the next-generation of industrial automation and control systemspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage67pt_PT
oaire.citation.issue2021pt_PT
oaire.citation.startPage50pt_PT
oaire.citation.titleFuture Generation Computer Systemspt_PT
oaire.citation.volume119pt_PT
person.familyNameMenoita Henriques
person.familyNameCaldeira
person.givenNameJoão Pedro
person.givenNameFilipe
person.identifierhttps://scholar.google.pt/citations?user=AExQrJwAAAAJ
person.identifierlXPmBvYAAAAJ
person.identifier.ciencia-idBB15-BFE2-17AA
person.identifier.ciencia-idCB11-8109-AB1D
person.identifier.orcid0000-0001-7380-9511
person.identifier.orcid0000-0001-7558-2330
person.identifier.scopus-author-id36023210300
rcaap.cv.cienciaidCB11-8109-AB1D | Filipe Caldeira
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication9b3258cd-a3d1-46f9-bc04-2bdd99d87014
relation.isAuthorOfPublicatione845705e-5b0b-4f70-9c53-c472ffd768d1
relation.isAuthorOfPublication.latestForDiscoverye845705e-5b0b-4f70-9c53-c472ffd768d1

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0167739X21000431-main.pdf
Size:
4.07 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: