Publication
An Evaluation of How Big-Data and Data Warehouses Improve Business Intelligence Decision Making
dc.contributor.author | Martins, Anthony | |
dc.contributor.author | Martins, Pedro | |
dc.contributor.author | Caldeira, Filipe | |
dc.contributor.author | Sá, Filipe | |
dc.contributor.editor | Rocha, {\'A | en_US |
dc.date.accessioned | 2023-07-04T10:40:14Z | |
dc.date.available | 2023-07-04T10:40:14Z | |
dc.date.issued | 2020 | |
dc.date.updated | 2023-06-14T14:45:07Z | |
dc.description.abstract | Analyze and understand how to combine data warehouse with business intelligence tools, and other useful information or tools to visualize KPIs are critical factors in achieving the goal of raising competencies and business results of an organization. This article reviews data warehouse concepts and their appropriate use in business intelligence projects with a focus on large amounts of information. Nowadays, data volume is more significant and critical, and proper data analysis is essential for a successful project. From importing data to displaying results, there are crucial tasks such as extracting information, transforming it analyzing, and storing data for later querying. This work contributes with the proposition of a Big Data Business Intelligence architecture for an efficiently BI platform and the explanation of each step in creating a Data Warehouse and how data transformation is designed to provide useful and valuable information. To make valuable information useful, Business Intelligence tools are presented and evaluates, contributing to the continuous improvement of business results. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1007/978-3-030-45688-7_61 | pt_PT |
dc.identifier.eid | 2-s2.0-85085500703 | |
dc.identifier.isbn | 978-3-030-45688-7 | |
dc.identifier.issn | 21945365 21945357 | |
dc.identifier.slug | cv-prod-3079547 | |
dc.identifier.uri | http://hdl.handle.net/10400.19/7855 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer International Publishing | pt_PT |
dc.subject | Data Warehouse | pt_PT |
dc.subject | · Big Data | pt_PT |
dc.subject | Data Mart · | pt_PT |
dc.subject | Business Intelligence | pt_PT |
dc.subject | OLAP | pt_PT |
dc.subject | ETL | pt_PT |
dc.subject | Power BI | pt_PT |
dc.subject | Analytical methods | pt_PT |
dc.title | An Evaluation of How Big-Data and Data Warehouses Improve Business Intelligence Decision Making | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 619 | pt_PT |
oaire.citation.startPage | 609 | pt_PT |
oaire.citation.title | WorldCIST 2020 | pt_PT |
person.familyName | Caldeira | |
person.familyName | Sá | |
person.givenName | Filipe | |
person.givenName | Filipe | |
person.identifier | lXPmBvYAAAAJ | |
person.identifier | R-00H-E4X | |
person.identifier.ciencia-id | CB11-8109-AB1D | |
person.identifier.ciencia-id | 791E-0243-634F | |
person.identifier.orcid | 0000-0001-7558-2330 | |
person.identifier.orcid | 0000-0002-7846-8397 | |
person.identifier.scopus-author-id | 36023210300 | |
person.identifier.scopus-author-id | 8447524700 | |
rcaap.cv.cienciaid | CB11-8109-AB1D | Filipe Caldeira | |
rcaap.rights | restrictedAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | e845705e-5b0b-4f70-9c53-c472ffd768d1 | |
relation.isAuthorOfPublication | 9fb8350d-65a7-4170-b28f-cc60c70c0bb2 | |
relation.isAuthorOfPublication.latestForDiscovery | 9fb8350d-65a7-4170-b28f-cc60c70c0bb2 |