Repository logo
 
Publication

Predictive Torque Control of SynRM Drives with online MTPA Trajectory Tracking and Inductances Estimation

dc.contributor.authorHadla, Hazem
dc.contributor.authorCruz, Sérgio
dc.contributor.authorVaratharajan, Anantaram
dc.date.accessioned2020-01-28T14:10:40Z
dc.date.available2020-01-28T14:10:40Z
dc.date.issued2017-05-24
dc.description.abstractThis paper proposes a new predictive torque control algorithm for synchronous reluctance motor drives with the ability to track online the maximum torque per ampere trajectory. An additional term is included in the cost function of the predictive control algorithm which uses an adaptive weighting factor to improve the dynamic behavior of the drive system. As the derivative of torque with respect to the current angle depends on the values of the apparent and incremental inductances, the apparent inductances are estimated online based on the values of the flux linkage and current components while the incremental inductances are estimated using a recursive least squares (RLS) algorithm. Experimental results validate the proposed control algorithm and demonstrate a remarkable performance both in steady-state and during transients, as well as a reduction of the current ripple and audible noise.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citation4pt_PT
dc.identifier.doi10.1109/IEMDC.2017.8002104pt_PT
dc.identifier.isbn978-1-5090-4281-4
dc.identifier.urihttp://hdl.handle.net/10400.19/6153
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8002104pt_PT
dc.subjectSynchronous reluctance motor drivespt_PT
dc.subjectModel preditive modelpt_PT
dc.subjectMaximum torque per ampere traectorypt_PT
dc.subjectParameter estimationpt_PT
dc.titlePredictive Torque Control of SynRM Drives with online MTPA Trajectory Tracking and Inductances Estimationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceMiami, FL, USApt_PT
oaire.citation.titleIEEE International Electric Machines and Drives Conference (IEMDC)pt_PT
person.familyNameHadla
person.familyNameCruz
person.givenNameHazem
person.givenNameSérgio
person.identifier.ciencia-idD118-1FFC-1352
person.identifier.ciencia-id791E-7EF0-EB7E
person.identifier.orcid0000-0001-5154-126X
person.identifier.orcid0000-0002-0322-825X
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication43c9e1fe-89a5-4c5d-971e-0875c5ab9f90
relation.isAuthorOfPublication241f0a02-bdd7-4162-8736-8ff320e75e9b
relation.isAuthorOfPublication.latestForDiscovery241f0a02-bdd7-4162-8736-8ff320e75e9b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
IEEE_2017.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: