Repository logo
 
No Thumbnail Available
Publication

Aplicação da modelização por redes neuronais ao teor de compostos fenólicos e atividade antioxidante em bananas de diferentes cultivares secadas sob condições distintas

Use this identifier to reference this record.
Name:Description:Size:Format: 
Ata Banana.pdf316.13 KBAdobe PDF Download

Advisor(s)

Abstract(s)

Os compostos fenólicos estão amplamente presentes no reino vegetal, sendo essenciais para o crescimento e reprodução das plantas, além de serem responsáveis pela cor, adstringência e aroma em vários alimentos [1]. Estes compostos, sendo antioxidantes, combatem os radicais livres, previnem doenças cardíacas, doenças neurodegenerativas, problemas do aparelho circulatório, cancro, inflamação e inibem a oxidação lipídica [1-2]. Porém, o processamento térmico pode destruir a quantidade ou a biodisponibilidade destes compostos, reduzindo assim os efeitos benéficos para a saúde [3]. As redes neurais artificiais (ANN: Artificial Neural Networks) têm sido utilizadas nos últimos anos para a modelização de muitos processos em engenharia de alimentos, como por exemplo: modelização e controlo do processo de secagem das uvas, previsão do desempenho energético do processo de secagem por atomização para óleo de peixe e leite em pó desnatado, previsão do encolhimento e reidratação de cenouras desidratadas [4-5]. O presente estudo foi realizado com o objetivo de investigar o impacto das condições de secagem sobre o teor em compostos fenólicos totais e atividade antioxidante em bananas de duas cultivares, bem como modelizar as variáveis do processo por meio de redes neurais artificiais. Bananas (cv. Musa nana e Musa cavendishii) em fresco, secadas por ar a 50 e 70 ºC e liofilizadas foram analisados quanto ao seu conteúdo em compostos fenólicos (FT) utilizando o reagente de Folin-Ciocalteu e atividade antioxidante (AA) utilizando o radical ABTS. Todas as amostras foram sujeitas a seis extrações sucessivas (três com metanol e três com uma solução de acetona). Os dados experimentais serviram para treinar uma rede neural usada para análise de dados e previsão das variáveis de saída (FT e AA). Os resultados indicam que as bananas das duas cultivares apresentam resultados semelhantes e que a secagem ao ar provocou um decréscimo do conteúdo de fenóis e na atividade antioxidante para ambas as temperaturas. A liofilização também diminuiu o teor de compostos fenólicos, porém em menor grau. Os testes feitos com as redes neurais mostraram que as variáveis FT e AA podem ser previstas com uma precisão elevada a partir das variáveis de entrada (Figura 1): variedade, estado de secagem, tipo de extrato e ordem do extracto, sendo que de entre estas as que assumem maior importância são o estado de secagem e a ordem do extrato.

Description

Keywords

Fenois banana redes neuronais modelização secagem liofilização atividade antioxidante

Citation

Guiné RPF, Barroca MJ, Gonçalves F, Alves M, Oliveira S, Mendes M. (2014) Aplicação da modelização por redes neuronais ao teor de compostos fenólicos e atividade antioxidante em bananas de diferentes cultivares secadas sob condições distintas. Livro de atas do 12º Encontro de Química dos Alimentos, Lisboa, p. 296-299

Research Projects

Organizational Units

Journal Issue