Repository logo
 
Publication

Evalution through artificial neural networks of the sociodemographic Influences on food choices

dc.contributor.authorGuiné, Raquel
dc.contributor.authorFerrão, Ana Cristina
dc.contributor.authorCorreia, Paula
dc.contributor.authorFerreira, Manuela
dc.contributor.authorMendes, Mateus
dc.contributor.authorLeal, Marcela
dc.contributor.authorFerreira, Vanessa
dc.contributor.authorRumbak, Ivana
dc.contributor.authorEl-Said, Ayman
dc.contributor.authorPapageorgiou, Maria
dc.contributor.authorSzucs, Viktória
dc.contributor.authorVittadini, Elena
dc.contributor.authorKlava, Dace
dc.contributor.authorBartkiene, Elena
dc.contributor.authorMunoz, Lucia
dc.contributor.authorKorzeniowska, Małgorzata
dc.contributor.authorTarcea, Monica
dc.contributor.authorDjekic, Ilija
dc.contributor.authorBizjak, Maša
dc.contributor.authorIsoldi, Kathy
dc.date.accessioned2019-06-26T08:59:48Z
dc.date.available2019-06-26T08:59:48Z
dc.date.issued2019-05
dc.description.abstractIntroduction: The EATMOT Project is a multinational study that is being carried out in 16 countries about different eating motivations, given their recognized importance in the definition of people’s dietary patterns. Objective: This study investigated the influence of sociodemographic factors on some types of eating motivations, specifically: health related factors; economic and availability aspects; emotional determinants; social, cultural and religious influences; marketing and advertising campaigns and finally environmental concerns. Methods: This is a longitudinal observational study carried out on a non-probabilistic sample with 11960 participants. For the analysis of the data were used the T-test for independent samples or ANOVA with Post-Hoc Tukey HSD, depending on the case. The modelling through artificial neural networks included 7 input variables (sociodemographic characteristics) and 6 output variables (the eating motivations’ groups). Results: Variables like age, marital status, country, living environment, level of education or professional area significantly influenced all the types of eating motivations analysed. However, regarding gender, no significant differences were observed for two of the six types of motivations analysed: economic & availability and marketing & commercial. The results of the ANN modelling showed that the strongest positive factors determining the eating motivations were age for health, country for emotional motivations, gender for economic & availability, country for social & cultural, country for environmental & political, and finally country also for the marketing & commercial motivations. Conclusions: These results highlight the importance of the sociodemographic characteristics as determinants for eating patterns around the globe, and particularly the geographic location.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationGuiné, R., Ferrão, A. C., Correia, P., Ferreira, M., Mendes, M., Leal, M., ... Isoldi, K. (2019, Maio). Evalution through artificial neural networks of the sociodemographic Influences on food choices. In Resumos do XVIIII Congresso de Nutrição e Alimentação, Porto: Associação Portuguesa de Nutrição.pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.19/5559
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectANNpt_PT
dc.subjectFood choicept_PT
dc.titleEvalution through artificial neural networks of the sociodemographic Influences on food choicespt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlacePorto, PTpt_PT
oaire.citation.titleCongresso de Alimentação e Nutrição: O valor da Nutriçãopt_PT
person.familyNamede Pinho Ferreira Guiné
person.familyNameFerrão
person.familyNameCorreia
person.familyNameFerreira
person.familyNameMendes
person.familyNameLeal
person.familyNameRumbak
person.familyNameEl-Said
person.familyNamePapageorgiou
person.familyNameVittadini
person.familyNameKlava
person.familyNameBartkiene
person.familyNameTarcea
person.familyNameDjekic
person.familyNameIsoldi
person.givenNameRaquel
person.givenNameAna Cristina
person.givenNamePaula
person.givenNameManuela
person.givenNameMateus
person.givenNameMarcela
person.givenNameIvana
person.givenNameAyman
person.givenNameMaria
person.givenNameElena
person.givenNameDace
person.givenNameElena
person.givenNameMonica
person.givenNameIlija
person.givenNameKathy
person.identifierhttps://scholar.google.pt/citations?user=abFDovIAAAAJ&hl=pt-PT
person.identifier1684018
person.identifier670199
person.identifier.ciencia-id8B13-5492-0F23
person.identifier.ciencia-idE610-F403-FADD
person.identifier.ciencia-id7915-FB81-4520
person.identifier.ciencia-id5313-FB6A-40A1
person.identifier.orcid0000-0003-0595-6805
person.identifier.orcid0000-0002-3337-9139
person.identifier.orcid0000-0002-2023-4475
person.identifier.orcid0000-0002-8452-2222
person.identifier.orcid0000-0003-4313-7966
person.identifier.orcid0000-0002-7052-1077
person.identifier.orcid0000-0002-6419-0427
person.identifier.orcid0000-0003-4344-7702
person.identifier.orcid0000-0001-7009-846X
person.identifier.orcid0000-0001-9181-0815
person.identifier.orcid0000-0002-9490-7396
person.identifier.orcid0000-0003-3706-1280
person.identifier.orcid0000-0001-7299-118X
person.identifier.orcid0000-0002-8132-8299
person.identifier.orcid0000-0003-3465-4152
person.identifier.ridN-1236-2013
person.identifier.ridV-4646-2018
person.identifier.ridC-5982-2018
person.identifier.ridC-5843-2018
person.identifier.ridG-3649-2015
person.identifier.scopus-author-id6603138390
person.identifier.scopus-author-id57195937199
person.identifier.scopus-author-id24597116100
person.identifier.scopus-author-id54795093700
person.identifier.scopus-author-id24537448100
person.identifier.scopus-author-id8645438400
person.identifier.scopus-author-id57195311310
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication59580952-77cc-4e4e-ae90-527a8b994f9f
relation.isAuthorOfPublication24fe148c-9adc-4ef9-9f16-9c66b1d3137b
relation.isAuthorOfPublication9395b4b0-ffd1-4f2d-a99c-4bb5cac701c0
relation.isAuthorOfPublicationb3ac2fdc-b878-4f68-9045-4b1c0ae8f567
relation.isAuthorOfPublicationd210b9b9-4a32-417e-a589-793f37e5d797
relation.isAuthorOfPublication7d3ae2c9-8414-442e-a20d-32d3c6c572ce
relation.isAuthorOfPublicatione9ae7bcd-26d8-4b85-bc98-15648a2b178c
relation.isAuthorOfPublication9cecd9b5-b067-477a-93f1-974e0e5bc21b
relation.isAuthorOfPublicationd71e7dbf-4391-4dcc-a13d-149bb476ce07
relation.isAuthorOfPublication40a43768-512f-4ec4-9ff2-3f8b45ddff95
relation.isAuthorOfPublication8c469efd-924f-4f7f-9d59-e14b9d130cdd
relation.isAuthorOfPublication124a55d2-86af-4a04-98cd-57dc8f97715d
relation.isAuthorOfPublication0c68d529-c3e9-4076-8e44-9d85c31121b3
relation.isAuthorOfPublicationd8960ce0-ea9b-4de2-9577-75f4b08bb3b6
relation.isAuthorOfPublicationca265b17-4032-45d8-a70f-28af33bb6924
relation.isAuthorOfPublication.latestForDiscoveryd8960ce0-ea9b-4de2-9577-75f4b08bb3b6

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Abstract_EATMOT.pdf
Size:
425.83 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: