Name: | Description: | Size: | Format: | |
---|---|---|---|---|
9.76 MB | Adobe PDF |
Authors
Abstract(s)
O desempenho das redes viárias urbanas é fortemente influenciado pelas interseções,
principalmente em termos de demoras, segurança e emissões ambientais. As rotundas,
um tipo de interseção caracterizado pela convergência dos fluxos em torno de uma praça
central, são particularmente eficientes na capacidade viária e na redução de acidentes
graves. No entanto, assim como outras interseções, as rotundas apresentam pontos de
conflito, tanto entre veículos quanto entre veículos e peões, tornando a gestão das
velocidades um fator crucial. Velocidades elevadas estão associadas a maior risco de
acidentes e criam barreiras à circulação de pedestres e ciclistas. Por outro lado, a
imposição de velocidades muito baixas, por meio de condicionantes geométricas, pode
gerar desconforto aos condutores e reduzir a adequação das rotundas para vias de
hierarquia superior.
Nesta dissertação, busca-se analisar o perfil de velocidades dos condutores nas fases de
aproximação, circulação e saída das rotundas, com o objetivo de desenvolver um modelo
matemático capaz de prever essas velocidades com base em variáveis geométricas e
operacionais. Para isso, foi utilizada uma base de dados composta por trajetórias reais,
coletadas por meio de um drone e de um veículo instrumentado. A análise desses dados
permitiu identificar padrões comportamentais dos condutores e destacar a influência
crucial de uma conceção geométrica adequada nas trajetórias e velocidades adotadas. O
modelo desenvolvido, uma vez devidamente calibrado, apresenta elevada precisão na
estimativa das velocidades de qualquer veículo ao longo da sua trajetória, ultrapassando
algumas limitações das metodologias existentes. Este modelo tem aplicabilidade prática,
permitindo que se avalie, ainda na fase de projeto, o impacto das opções geométricas nos
padrões de velocidade e, consequentemente, nos índices de segurança das rotundas.
The performance of urban road networks is strongly influenced by intersections, especially in terms of delays, safety and environmental emissions. Roundabouts, a type of intersection characterized by the convergence of traffic flows around a central square, are particularly efficient in terms of road capacity and in reducing serious accidents. However, like other intersections, roundabouts present points of conflict, both between vehicles and between vehicles and pedestrians, making speed management a crucial factor. High speeds are associated with a greater risk of accidents and create barriers to the movement of pedestrians and cyclists. On the other hand, imposing very low speeds, through geometric constraints, can cause discomfort to drivers and reduce the suitability of roundabouts for higher-hierarchy roads. This dissertation seeks to analyze the speed profile of drivers in the phases of approach, circulation and exit of roundabouts, with the aim of developing a mathematical model capable of predicting these speeds based on geometric and operational variables. To this end, a database consisting of real trajectories collected by a drone and an instrumented vehicle was used. Analysis of this data allowed us to identify driver behavior patterns and highlight the crucial influence of an appropriate geometric design on the trajectories and speeds adopted. Once properly calibrated, the developed model presents high accuracy in estimating the speeds of any vehicle along its trajectory, overcoming some limitations of existing methodologies. This model has practical applicability, allowing us to assess, even at the design stage, the impact of geometric options on speed patterns and, consequently, on the safety indices of roundabouts.
The performance of urban road networks is strongly influenced by intersections, especially in terms of delays, safety and environmental emissions. Roundabouts, a type of intersection characterized by the convergence of traffic flows around a central square, are particularly efficient in terms of road capacity and in reducing serious accidents. However, like other intersections, roundabouts present points of conflict, both between vehicles and between vehicles and pedestrians, making speed management a crucial factor. High speeds are associated with a greater risk of accidents and create barriers to the movement of pedestrians and cyclists. On the other hand, imposing very low speeds, through geometric constraints, can cause discomfort to drivers and reduce the suitability of roundabouts for higher-hierarchy roads. This dissertation seeks to analyze the speed profile of drivers in the phases of approach, circulation and exit of roundabouts, with the aim of developing a mathematical model capable of predicting these speeds based on geometric and operational variables. To this end, a database consisting of real trajectories collected by a drone and an instrumented vehicle was used. Analysis of this data allowed us to identify driver behavior patterns and highlight the crucial influence of an appropriate geometric design on the trajectories and speeds adopted. Once properly calibrated, the developed model presents high accuracy in estimating the speeds of any vehicle along its trajectory, overcoming some limitations of existing methodologies. This model has practical applicability, allowing us to assess, even at the design stage, the impact of geometric options on speed patterns and, consequently, on the safety indices of roundabouts.
Description
Keywords
Rotunda Segurança Velocidades Roundabouts Speed Security