Publication
α-sober spaces via the orthogonal closure operator
dc.contributor.author | Sousa, Lurdes | |
dc.date.accessioned | 2015-06-30T08:16:55Z | |
dc.date.available | 2015-06-30T08:16:55Z | |
dc.date.issued | 1996 | |
dc.description.abstract | Each ordinal alpha equipped with the upper topology is a T0-space. It is well known that for alpha=2 the reflective hull of alpha in Top0 is the subcategory of sober spaces. Here, we define alpha-sober space for every ordinal alpha in such a way that the reflective hull of alpha in Top0 is the subcategory of alpha-sober spaces. Moreover, we obtain an order-preserving bijective correspondence between a proper class of ordinals and the corresponding (epi)reflective hulls. Our main tool is the concept of orthogonal closure operator, introduced by the authour in a previous paper. | por |
dc.identifier.issn | 0927-2852 | |
dc.identifier.uri | http://hdl.handle.net/10400.19/2852 | |
dc.language.iso | eng | por |
dc.peerreviewed | yes | por |
dc.publisher | R. Lowen | por |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007/978-94-009-0263-3_8 | por |
dc.subject | orthogonal closure operator | por |
dc.subject | reflective hull | por |
dc.subject | alpha-sober space | por |
dc.title | α-sober spaces via the orthogonal closure operator | por |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Netherlands | por |
oaire.citation.endPage | 95 | por |
oaire.citation.startPage | 87 | por |
oaire.citation.title | Applied Categorical Structures | por |
oaire.citation.volume | 4 | por |
rcaap.rights | closedAccess | por |
rcaap.type | article | por |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- α-Sober Spaces via the Orthogonal Closure Operator - Springer.pdf
- Size:
- 259.5 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.79 KB
- Format:
- Item-specific license agreed upon to submission
- Description: