Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Evaluation of Tomato-Based Packing Material for Retention of Ammonia, Nitrous Oxide, Carbon Dioxide and Methane in Gas Phase Biofilters: A Laboratory StudyPublication . Pereira, José L.S.; Perdigão, Adelaide; Marques, Francisco; Coelho, Catarina; Mota, Mariana; Fangueiro, DavidBiofilters are an effective air pollution control technology to break down gaseous contaminants and produce innocuous end products. This laboratory study aimed to evaluate a biofilter media, mainly composed by tomato waste, as packing material to reduce NH3, N2O, CO2 and CH4 losses from stored pig slurry. Three mixtures of packing materials, with and without oxalic acid, were arranged in treatments, namely: mixture of tomato waste, pine bark and agricultural compost; mixture of tomato waste and rice husk; tomato waste only. A control treatment (no biofilter) was also included. The experiments were conducted using a system of laboratory scale biofilters connected to jars filled with pig slurry and under a constant airflow rate. The gas concentrations were measured for 14 days and the physicochemical of the packing materials were assessed. Results showed that biofilter media mixtures had a potential for NH3 retention ranging from 51 to 77% and the addition of oxalic acid to these biofilters increased NH3 retention to 72–79%. Additionally, the biofilter media mixtures with and without oxalic acid showed a potential retention for CH4 (29–69%) but not for N2O, yet with no impact on the global warming potential. It can be concluded that tomato based biofilters had the potential to reduce gaseous emissions from slurry.
- The Implications of Animal Manure Management on Ammonia and Greenhouse Gas EmissionsPublication . Fangueiro, David; Merino, Pilar; Pantelopoulos, Athanasios; L.S. Pereira, José; Amon, Barbara; Chadwick, DavidHigh livestock densities and the subsequent generation of large quantities of manure, in some areas of the world, generate hotspots of increased environmental risks through ammonia (NH3) and greenhouse gas (methane, CH4; nitrous oxide, N2O) emissions. Livestock production is therefore facing increased pressures from society to comply with environmental legislation, so that systems are managed in a sustainable and environmentally friendly manner. A key solution to minimize or avoid environmental and health concerns associated with manure is to ensure appropriate feeding strategies as well as manure management techniques through the entire manure management chain from animal housing, storage of manure, treatment operations and finally application to soil. An integrated framework is needed to allow practical, cost-effective on-farm strategies to be selected, which will reduce losses and improve resource use efficiencies. In this chapter, we first analyse the contribution of manure management to NH3 and GHG emissions with focus on bovine, pig and poultry manure. We then describe different mitigation options for reducing gaseous emissions along the manure management chain in terms of their efficiency to decrease NH3 and GHG emissions and their applicability. Finally, we present and assess two case studies of integrated manure management strategies to reduce gaseous emissions.