Repository logo
 
Publication

Predictive Model for Estimating Body Weight Based on Artificial Intelligence: An Integrated Approach to Pre-processing and Evaluation

dc.contributor.authorFigueiredo, Diana
dc.contributor.authorDuarte, A. P.
dc.contributor.authorCunha, Carlos
dc.date.accessioned2024-10-08T14:48:47Z
dc.date.available2024-10-08T14:48:47Z
dc.date.issued2024
dc.date.updated2024-09-21T23:39:24Z
dc.description.abstractBody weight is much more than just a number on a scale. This value can indicate various diseases, as both excess and insufficient weight have implications for an individual’s health. Excess weight is associated with heart disease, obesity, diabetes, high blood pressure, and respiratory disorders, among others. Meanwhile, extreme underweight is associated with problems such as nutritional deficiency, weakened immune system, osteoporosis, and hormonal imbalances. Due to these issues, there is a need to monitor and analyse body changes to adopt a diet and lifestyle balanced with individual needs. The weight control process is complicated and depends on various factors. This paper aims to develop a machine-learning model to predict future weight based on dietary records, physical exercise, and basal metabolic rate to demonstrate three days’ impact on future weight. Results of the model’s performance show that the coefficient of determination yielded a value of 0.75, which is considered good for this metric. The mean square and absolute errors demonstrate that the model could learn patterns in the data without significant overfitting.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFigueiredo, D.M., Duarte, R.P., Cunha, C.A. (2024). Predictive Model for Estimating Body Weight Based on Artificial Intelligence: An Integrated Approach to Pre-processing and Evaluation. In: de la Iglesia, D.H., de Paz Santana, J.F., López Rivero, A.J. (eds) New Trends in Disruptive Technologies, Tech Ethics, and Artificial Intelligence. DiTTEt 2024. Advances in Intelligent Systems and Computing, vol 1459. Springer, Cham. https://doi.org/10.1007/978-3-031-66635-3_3pt_PT
dc.identifier.doi10.1007/978-3-031-66635-3_3pt_PT
dc.identifier.isbn9783031666346
dc.identifier.isbn9783031666353
dc.identifier.issn2194-5357
dc.identifier.issn2194-5365
dc.identifier.slugcv-prod-4150566
dc.identifier.urihttp://hdl.handle.net/10400.19/8580
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Nature Switzerlandpt_PT
dc.relationPIDI/CISeD/2022/009pt_PT
dc.subjectArtificial Intelligencept_PT
dc.titlePredictive Model for Estimating Body Weight Based on Artificial Intelligence: An Integrated Approach to Pre-processing and Evaluationpt_PT
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage39pt_PT
oaire.citation.startPage28pt_PT
oaire.citation.titleNew Trends in Disruptive Technologies, Tech Ethics, and Artificial Intelligencept_PT
person.familyNameDuarte
person.familyNameCunha
person.givenNameAnabela
person.givenNameCarlos
person.identifier2081924
person.identifier.ciencia-id7D1D-6FFD-E417
person.identifier.ciencia-idD71F-FC65-1F07
person.identifier.orcid0000-0002-0597-5777
person.identifier.orcid0000-0002-2754-5401
person.identifier.scopus-author-id39361170900
rcaap.cv.cienciaid211F-55A0-4B63 | Rui Pedro Monteiro Amaro Duarte
rcaap.rightsopenAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication351ae158-be3a-48e9-abf4-cde21032cdab
relation.isAuthorOfPublication384f50cd-9e87-40bd-b610-58008e05bec1
relation.isAuthorOfPublication.latestForDiscovery384f50cd-9e87-40bd-b610-58008e05bec1

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CIEN_DITTET_ARTIGO.pdf
Size:
289.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: