Logo do repositório
 
Publicação

AI-Powered Data Management to Optimize Data Collection and Processing in a Painting Laboratory

dc.contributor.authorPereira, Maria Teresa Ribeiro
dc.contributor.authorPereira, Marisa João Guerra
dc.contributor.authorTavares, Miguel Guedes
dc.contributor.authorGuimarães, André
dc.contributor.authorVilarinho, Hermilio
dc.date.accessioned2026-02-18T12:16:07Z
dc.date.available2026-02-18T12:16:07Z
dc.date.issued2026-02-10en_US
dc.date.updated2026-02-13T15:42:24Z
dc.description.abstractIndustrial laboratories often remain under-digitized compared to production lines, creating a gap between data acquisition and analytical intelligence, critical for advanced quality control. This study addresses this gap by proposing and validating a novel framework that combines Low-Code digitalisation tools with Machine Learning (ML) and Causal Inference to optimise data collection and analysis in an automotive painting laboratory. A Microsoft Power Apps-based platform was developed in order to digitalise all measurement records, eliminating manual transcription errors (previously ≈ 40.01%) and reducing data-handling time by up to 34% of an operator’s shift, while enabling centralised, traceable storage and Power BI integration. Four datasets were used to assess predictive capacity with Random Forest, XGBoost and Neural Networks; Random Forest consistently provided the most stable results—Mean Absolute Error (MAE) of 0.972, Mean Absolute Percentage Error (MAPE) of 16.45%, and Root Mean Square Error (RMSE) of 1.307. Causal models (Linear Regression, DoWhy, Causal Forest, Double Machine Learning) consistently identified ultrafiltrate I solid content of the electrodeposition process as a dominant causal factor for defects. This study provides a novel framework that bridges digitalisation and ML-based causal reasoning in laboratory settings, offering a scalable approach that can be extended and replicated in other industrial sectors, aiming to develop smart, data-driven quality control systems.eng
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.citationPereira, M. T. R.; Guerra Pereira, M. J.; Tavares, M. G.; Guimarães, A. M.; Vilarinho, H. AI-Powered Data Management to Optimize Data Collection and Processing in a Painting Laboratory. Journal of Mechanical Engineering and Manufacturing 2026. https://doi.org/10.53941/jmem.2026.100011.
dc.identifier.doi10.53941/jmem.2026.100011en_US
dc.identifier.slugcv-prod-4734359
dc.identifier.urihttp://hdl.handle.net/10400.19/9693
dc.language.isoeng
dc.peerreviewedyes
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectdigitalisation
dc.subjectlaboratory
dc.subjectelectrodeposition
dc.subjectmachine learning
dc.subjectcausal inference
dc.titleAI-Powered Data Management to Optimize Data Collection and Processing in a Painting Laboratoryen_US
dc.typeresearch articleen_US
dspace.entity.typePublication
oaire.citation.titleJournal of Mechanical Engineering and Manufacturingen_US
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameGuimarães
person.givenNameAndré
person.identifier.ciencia-idAE12-CE94-82B0
person.identifier.orcid0000-0001-6346-5719
rcaap.cv.cienciaidAE12-CE94-82B0 | André Guimarães
rcaap.rightsopenAccessen_US
relation.isAuthorOfPublication6d7402ff-c1c5-44bd-845c-a8300b11da5c
relation.isAuthorOfPublication.latestForDiscovery6d7402ff-c1c5-44bd-845c-a8300b11da5c

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
FULL_PAPER.pdf
Tamanho:
9.61 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.82 KB
Formato:
Item-specific license agreed upon to submission
Descrição: