Repository logo
 

CISeD - Artigo em revista científica, indexada ao WoS/Scopus

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 50
  • Sustainable Heat Production for Fossil Fuel Replacement—Life Cycle Assessment for Plant Biomass Renewable Energy Sources
    Publication . Lopes Brás, Isabel Paula; Fabriccino, Massimiliano; Ferreira, José; Ferreira Silva, Maria Elisabete; Mignano, Vincenzo
    This study aims to assess the environmental impact of using wood-based biomass as a high-efficiency fuel alternative to fossil fuels for heat production. To achieve this, the life cycle of biomass transformation, utilization, and disposal was analyzed using the life cycle assessment (LCA) methodology with SimaPro 9.5.0.2 PhD software. The system boundaries included extraction, processing, transportation, combustion, and waste management, following a cradle-to-gate approach. A comparative analysis was conducted between natural gas, the most widely used conventional heating fuel, and two biomass-based fuels: wood pellets and wood chips. The results indicate that biomass utilization reduces greenhouse gas emissions (−19%) and fossil resource depletion (−16%) while providing environmental benefits across all assessed impact categories analyzed, except for land use (+96%). Biomass is also to be preferred for forest waste management, ease of supply, and energy independence. However, critical life cycle phases, such as raw material processing and transportation, were found to contribute significantly to human health and ecosystem well-being. To mitigate these effects, optimizing combustion efficiency, improving supply chain logistics, and promoting sustainable forestry practices are recommended. These findings highlight the potential of biomass as a viable renewable energy source and provide insights into strategies for minimizing its environmental footprint.
  • Adaptive and Scalable Database Management with Machine Learning Integration: A PostgreSQL Case Study
    Publication . Abbasi, Maryam; Bernardo, Marco V.; Vaz, Paulo; Silva, José; Martins, Pedro; ANTUNES VAZ, PAULO JOAQUIM; Silva, José
    The increasing complexity of managing modern database systems, particularly in terms of optimizing query performance for large datasets, presents significant challenges that traditional methods often fail to address. This paper proposes a comprehensive framework for integrating advanced machine learning (ML) models within the architecture of a database management system (DBMS), with a specific focus on PostgreSQL. Our approach leverages a combination of supervised and unsupervised learning techniques to predict query execution times, optimize performance, and dynamically manage workloads. Unlike existing solutions that address specific optimization tasks in isolation, our framework provides a unified platform that supports real-time model inference and automatic database configuration adjustments based on workload patterns. A key contribution of our work is the integration of ML capabilities directly into the DBMS engine, enabling seamless interaction between the ML models and the query optimization process. This integration allows for the automatic retraining of models and dynamic workload management, resulting in substantial improvements in both query response times and overall system throughput. Our evaluations using the Transaction Processing Performance Council Decision Support (TPC-DS) benchmark dataset at scale factors of 100 GB, 1 TB, and 10 TB demonstrate a reduction of up to 42% in query execution times and a 74% improvement in throughput compared with traditional approaches. Additionally, we address challenges such as potential conflicts in tuning recommendations and the performance overhead associated with ML integration, providing insights for future research directions. This study is motivated by the need for autonomous tuning mechanisms to manage large-scale, hetero geneous workloads while answering key research questions, such as the following: (1) How can machine learning models be integrated into a DBMS to improve query optimization and workload management? (2) What performance improvements can be achieved through dynamic configuration tuning based on real-time workload patterns? Our results suggest that the proposed framework significantly reduces the need for manual database administration while effectively adapting to evolving workloads, offering a robust solution for modern large-scale data environments.
  • Machine Learning Approaches for Predicting Maize Biomass Yield: Leveraging Feature Engineering and Comprehensive Data Integration
    Publication . Abbasi, Maryam; Vaz, Paulo; Silva, José; Martins, Pedro; Silva, José; ANTUNES VAZ, PAULO JOAQUIM
    The efficient prediction of corn biomass yield is critical for optimizing crop production and addressing global challenges in sustainable agriculture and renewable energy. This study employs advanced machine learning techniques, including Gradient Boosting Machines (GBMs), Random Forests (RFs), Support Vector Machines (SVMs), and Artificial Neural Networks (ANNs), integrated with comprehensive environmental, soil, and crop management data from key agricultural regions in the United States. A novel framework combines feature engineering, such as the creation of a Soil Fertility Index (SFI) and Growing Degree Days (GDDs), and the incorporation of interaction terms to address complex non-linear relationships between input variables and biomass yield. We conduct extensive sensitivity analysis and employ SHAP (SHapley Additive exPlanations) values to enhance model interpretability, identifying SFI, GDDs, and cumulative rainfall as the most influential features driving yield outcomes. Our findings highlight significant synergies among these variables, emphasizing their critical role in rural environmental governance and precision agriculture. Furthermore, an ensemble approach combining GBMs, RFs, and ANNs outperformed individual models, achieving an RMSE of 0.80 t/ha and R2 of 0.89. These results underscore the potential of hybrid modeling for real-world applications in sustainable farming practices. Addressing the concerns of passive farmer participation, we propose targeted incentives, education, and institutional support mechanisms to enhance stakeholder collaboration in rural environmental governance. While the models assume rational decision-making, the inclusion of cultural and political factors warrants further investigation to improve the robustness of the framework. Additionally, a map of the study region and improved visualizations of feature importance enhance the clarity and relevance of our findings. This research contributes to the growing body of knowledge on predictive modeling in agriculture, combining theoretical rigor with practical insights to support policymakers and stakeholders in optimizing resource use and addressing environ mental challenges. By improving the interpretability and applicability of machine learning models, this study provides actionable strategies for enhancing crop yield predictions and advancing rural environmental governance.
  • Data Privacy and Ethical Considerations in Database Management
    Publication . Pina, Eduardo; Ramos, José; Jorge, Henrique; ANTUNES VAZ, PAULO JOAQUIM; Vaz, Paulo; Silva, José; Wanzeller, Cristina; Abbasi, Maryam; Martins, Pedro; Silva, José; Wanzeller Guedes de Lacerda, Ana Cristina
    Data privacy and ethical considerations ensure the security of databases by respecting individual rights while upholding ethical considerations when collecting, managing, and using information. Nowadays, despite having regulations that help to protect citizens and organizations, we have been presented with thousands of instances of data breaches, unauthorized access, and misuse of data related to such individuals and organizations. In this paper, we propose ethical considerations and best practices associated with critical data and the role of the database administrator who helps protect data. First, we suggest best practices for database administrators regarding data minimization, anonymization, pseudonymization and encryption, access controls, data retention guidelines, and stakeholder communication. Then, we present a case study that illustrates the application of these ethical implementations and best practices in a real-world scenario, showing the approach in action and the benefits of privacy. Finally, the study highlights the importance of a comprehensive approach to deal with data protection challenges and provides valuable insights for future research and developments in this field
  • Enhancing Visual Perception in Immersive VR and AR Environments: AI-Driven Color and Clarity Adjustments Under Dynamic Lighting Conditions
    Publication . Abbasi, Maryam; Silva, José; Martins, Pedro; ANTUNES VAZ, PAULO JOAQUIM; Silva, José
    The visual fidelity of virtual reality (VR) and augmented reality (AR) environments is essential for user immersion and comfort. Dynamic lighting often leads to chromatic distortions and reduced clarity, causing discomfort and disrupting user experience. This paper introduces an AI-driven chromatic adjustment system based on a modified U-Net architecture, optimized for real-time applications in VR/AR. This system adapts to dynamic lighting conditions, addressing the shortcomings of traditional methods like histogram equalization and gamma correction, which struggle with rapid lighting changes and real-time user interactions. We compared our approach with state-of-the-art color constancy algorithms, including Barron’s Convolutional Color Constancy and STAR, demonstrating superior performance. Experimental results from 60 participants show significant improvements, with up to 41% better color accuracy and 39% enhanced clarity under dynamic lighting conditions. The study also included eye-tracking data, which confirmed increased user engagement with AI-enhanced images. Our system provides a practical solution for developers aiming to improve image quality, reduce visual discomfort, and enhance overall user satisfaction in immersive environments. Future work will focus on extending the model’s capability to handle more complex lighting scenarios.
  • Real-Time Gesture-Based Hand Landmark Detection for Optimized Mobile Photo Capture and Synchronization
    Publication . Marques, Pedro; ANTUNES VAZ, PAULO JOAQUIM; Silva, José; Martins, Pedro; Abbasi, Maryam
    Gesture recognition technology has emerged as a transformative solution for natural and intuitive human–computer interaction (HCI), offering touch-free operation across diverse fields such as healthcare, gaming, and smart home systems. In mobile contexts, where hygiene, convenience, and the ability to operate under resource constraints are critical, hand gesture recognition provides a compelling alternative to traditional touch based interfaces. However, implementing effective gesture recognition in real-world mobile settings involves challenges such as limited computational power, varying environmen tal conditions, and the requirement for robust offline–online data management. In this study, we introduce ThumbsUp, which is a gesture-driven system, and employ a partially systematic literature review approach (inspired by core PRISMA guidelines) to identify the key research gaps in mobile gesture recognition. By incorporating insights from deep learning–based methods (e.g., CNNs and Transformers) while focusing on low resource consumption, we leverage Google’s MediaPipe in our framework for real-time detection of 21 hand landmarks and adaptive lighting pre-processing, enabling accurate recogni tion of a “thumbs-up” gesture. The system features a secure queue-based offline–cloud synchronization model, which ensures that the captured images and metadata (encrypted with AES-GCM) remain consistent and accessible even with intermittent connectivity. Ex perimental results under dynamic lighting, distance variations, and partially cluttered environments confirm the system’s superior low-light performance and decreased resource consumption compared to baseline camera applications. Additionally, we highlight the feasibility of extending ThumbsUp to incorporate AI-driven enhancements for abrupt lighting changes and, in the future, electromyographic (EMG) signals for users with mo tor impairments. Our comprehensive evaluation demonstrates that ThumbsUp maintains robust performance on typical mobile hardware, showing resilience to unstable network conditions and minimal reliance on high-end GPUs. These findings offer new perspectives for deploying gesture-based interfaces in the broader IoT ecosystem, thus paving the way toward secure, efficient, and inclusive mobile HCI solutions.
  • Head-to-Head Evaluation of FDM and SLA in Additive Manufacturing: Performance, Cost, and Environmental Perspectives
    Publication . Abbasi, Maryam; ANTUNES VAZ, PAULO JOAQUIM; Martins, Pedro; Silva, José
    This paper conducts a comprehensive experimental comparison of two widely used additive manufacturing (AM) processes, Fused Deposition Modeling (FDM) and Stereolithography (SLA), under standardized conditions using the same test geometries and protocols. FDM parts were printed with both Polylactic Acid (PLA) and Acryloni trile Butadiene Styrene (ABS) filaments, while SLA used a general-purpose photopolymer resin. Quantitative evaluations included surface roughness, dimensional accuracy, ten sile properties, production cost, and energy consumption. Additionally, environmental considerations and process reliability were assessed by examining waste streams, recy clability, and failure rates. The results indicate that SLA achieves superior surface quality (Ra ≈ 2 µm vs. 12–13 µm) and dimensional tolerances (±0.05 mm vs. ±0.15–0.20 mm), along with higher tensile strength (up to 70 MPa). However, FDM provides notable ad vantages in cost (approximately 60% lower on a per-part basis), production speed, and energy efficiency. Moreover, from an environmental perspective, FDM is more favorable when using biodegradable PLA or recyclable ABS, whereas SLA resin waste is hazardous. Overall, the study highlights that no single process is universally superior. FDM offers a rapid, cost-effective solution for prototyping, while SLA excels in precision and surface finish. By presenting a detailed, data-driven comparison, this work guides engineers, product designers, and researchers in choosing the most suitable AM technology for their specific needs.
  • Comprehensive Evaluation of Deepfake Detection Models: Accuracy, Generalization, and Resilience to Adversarial Attacks
    Publication . Abbasi, Maryam; ANTUNES VAZ, PAULO JOAQUIM; Silva, José; Martins, Pedro
    The rise of deepfakes—synthetic media generated using artificial intelli gence—threatens digital content authenticity, facilitating misinformation and manipu lation. However, deepfakes can also depict real or entirely fictitious individuals, leveraging state-of-the-art techniques such as generative adversarial networks (GANs) and emerging diffusion-based models. Existing detection methods face challenges with generalization across datasets and vulnerability to adversarial attacks. This study focuses on subsets of frames extracted from the DeepFake Detection Challenge (DFDC) and FaceForensics++ videos to evaluate three convolutional neural network architectures—XCeption, ResNet, and VGG16—for deepfake detection. Performance metrics include accuracy, precision, F1-score, AUC-ROC, and Matthews Correlation Coefficient (MCC), combined with an assessment of resilience to adversarial perturbations via the Fast Gradient Sign Method (FGSM). Among the tested models, XCeption achieves the highest accuracy (89.2% on DFDC), strong generalization, and real-time suitability, while VGG16 excels in precision and ResNet provides faster inference. However, all models exhibit reduced performance under adversarial conditions, underscoring the need for enhanced resilience. These find ings indicate that robust detection systems must consider advanced generative approaches, adversarial defenses, and cross-dataset adaptation to effectively counter evolving deep fake threats
  • Pattern Recognition in Older Adults’ Activities of Daily Living
    Publication . Augusto, Gonçalo F.; P. Duarte, Rui; Cunha, Carlos; Matos, Ana
    Monitoring daily activities and behaviors is essential for improving quality of life in elderly care, where early detection of behavioral anomalies can lead to timely interventions and enhanced well-being. However, monitoring systems often struggle with scalability, high rates of false positives and negatives, and lack of interpretability in understanding anomalies within collected data. Addressing these limitations requires an adaptable, accurate solution to detect patterns and reliably identify outliers in elderly behavior data. This work aims to design a scalable monitoring system that identifies patterns and anomalies in elderly activity data while prioritizing interpretability to make well-informed decisions. The proposed system employs pattern recognition to detect and analyze outliers in behavior analysis, incorporating a service worker generated with Crontab Guru for automated data gathering and organization. Validation is conducted through statistical measures such as accumulated values, percentiles, and probability analyses to minimize false detections and ensure reliable performance. Experimental results indicate the system achieves high accuracy, with an occupancy probability across compartments and fewer outliers detected. The system demonstrates effective scalability and robust anomaly detection. By combining pattern recognition with a focus on interpretability, the proposed system provides actionable insights into elderly activity patterns and behaviors. This approach enhances the well-being of older adults, offering caregivers reliable information to support timely interventions and improve overall quality of life.