Repository logo
 

Search Results

Now showing 1 - 9 of 9
  • Cork Liquefaction for Polyurethane Foam Prodution
    Publication . Esteves, Bruno; Dulyanska, Yuliya; Costa, Catarina; Vicente, Jose; Domingos, Idalina; Pereira, Helena; Lemos, Luis; Cruz-Lopes, Luísa
    Cork is one of the most important forest products in Portugal. The cork processing industry is highly resource-efficient, with the only residue, cork powder, which is too minor in quantity for agglomerate production. This work studied the usage of cork powder for the production of added-value products via polyol liquefaction. Liquefactions were performed in a reactor using a mixture of polyethylene glycol (PEG 400) and glycerol as solvents, which were catalyzed by the addition of sulphuric acid. Several cork-to-solvent ratios, reaction temperatures, and reaction times were tested. Polyurethane foams were prepared by combining polyol mixtures with a catalyst, surfactant, blowing agent, and polymeric isocyanate. Mechanical tests of the produced foams were conducted, and compressive modulus of elasticity and compressive stress at 10% deformation were determined. The results show that the best conditions for obtaining high liquefaction yields are as follows: 160 ºC for 1 h; glycerol-to-PEG 400 ratio of 1:9; cork-to-solvent ratio of 1:6; and 3% H2SO4 catalyst addition. The Fourier Transform Infrared (FTIR) spectra indicated that the lignocellulosic fractions of the cork were more selectively dissolved during acidified polyol liquefaction than the suberin. With liquefied cork powder using these optimized conditions, it is possible to produce polyurethane foams with desired properties.
  • Enhancing Liquefaction Efficiency: Exploring the Impact of Pre-Hydrolysis on Hazelnut Shell (Corylus avellana L.)
    Publication . Cruz-Lopes, Luísa; Duarte, Joana; Dulyanska, Yuliya; Guiné, Raquel; Esteves, Bruno
    Hazelnut shells (HS), scientifically known as Corylus avellana L. shells, are waste produced by companies that process nuts. The main objective of this study was to find an efficient way to maximize the chemical potential of HS by solubilizing the hemicelluloses, which could then be used to recover sugars and, at the same time, increase the lignin content of this material to produce adhesives or high-strength foams. In order to optimize the pre-hydrolysis process, two different temperatures (160 and 170 °C) and times varying from 15 to 180 min were tested. All the remaining solid materials were then liquefied using polyalcohols with acid catalysis. The chemical composition of hazelnut shells was determined before and after the pre-hydrolysis. All of the process was monitored using Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR) by determining the spectra of solids and liquids after the pre-hydrolysis and liquefaction steps. The highest solubilization of hazelnut shells was found for 170 °C and 180 min, resulting in a 25.8% solubilization. Chemical analysis after the hydrolysis process showed a gradual increase in the solubilization of hemicelluloses as both the temperature and time of the reactor were increased. Simultaneously, the percentages of α-cellulose and lignin in the material also increased with rises in temperature and duration. FTIR-ATR allowed for the detection of significant spectral changes in the hazelnut shells from their initial state to the solid residue and further into the liquefied phase. This confirmed that pre-hydrolysis was effective in enhancing the chemical composition of the material, making it more suitable for the production of adhesives, polyurethane foams, or in the production of bioplastics and composite materials, combined with other biopolymers or synthetic polymers to enhance the mechanical properties and biodegradability of the resulting materials.
  • Extraction of Phenolic Compounds from Cherry Seeds: A Preliminary Study
    Publication . Dulyanska, Yuliya; Cruz-Lopes, Luísa; Esteves, Bruno; Ferreira, José; Domingos, Idalina; Lima, Maria João; Correia, Paula; Ferreira, Manuela; Fragata, Anabela; Barroca, Maria João; Moreira da Silva, Aida; Guiné, Raquel P. F.
    Agri-food waste has proved to be a valuable bioresource that can be used to obtain a variety of valuable materials, ingredients and chemicals. The optimum conditions for extracting bioactive compounds from sweet cherry seeds (SCS) with different solvents and temperatures were tested in this work. The choice criteria were based on the most efficient extracting capacity while looking for cleaner techniques with lower health or environmental impacts. Some extracting solvents (methanol, ethanol and water) were tested in different combinations and temperatures. The obtained extracts were evaluated for total phenolic compounds and some families of phenolics as well, using spectrophotometric methods. The results obtained showed that the highest extraction of total phenolic compounds was at 70 °C with 60:40 ratio water:ethanol (2.65 mg GAE/g), while maximum flavonoids were obtained at 80 °C and 50% ethanolic aqueous solution (7.26 mg QE/g). The highest value for ortho-diphenols was 21.47 mg GAE/g for 50 °C and water:ethanol 50:50 solution. The highest proanthocyanidins and flavonols were obtained for 50:50 solution at 70 °C (6.43 mg CE/g and 3.88 mg QE/g, respectively), while the same solution at 80 °C allowed obtaining maximum phenolic acids (1.68 mg CAE/g). The extraction of anthocyanins was found to vary significantly with concentration and temperature, being highest in the range 35–40 °C, when using an 80:20 water:ethanol solution. Hierarchical clustering showed three clusters, while factor analysis resulted in two factors and four groups of samples. In conclusion, it was found that extracts obtained from sweet cherry seeds have relevant bioactive compounds with applications in the food, pharmaceutical or cosmetic industries.
  • Chemical Composition and Optimization of Liquefaction Parameters of Cytisus scoparius (Broom)
    Publication . Cruz-Lopes, Luísa; Almeida, Daniela; Dulyanska, Yuliya; Domingos, Idalina; Ferreira, José; Fragata, Anabela; Esteves, Bruno
    Invasive plants spread in such a way that they are threats to native species and to biodiversity. In this context, this work aims to determine possible valorizations of Scotch Broom Cytisus scoparius (L.) Link. This species harvested in the Viseu region was used in the present study. The eco-valorization of these renewable resources was made by conversion into liquid mixtures that can later be used in the manufacture of valuable products. For a better understanding of the results obtained, a chemical characterization of the Cytisus scoparius branches (CsB) was made. The ash content, extractives in dichloromethane, ethanol and water, lignin, cellulose and hemicellulose of the initial material were determined. Liquefaction was made in a reactor with different granulometry, temperatures and time. Results show that Broom is mainly composed of cellulose (36.1%), hemicelluloses (18.6%) and lignin (14.6%) with extractives mainly soluble in ethanol, followed by water and a small amount in dichloromethane. Ashes were around 0.69%, mainly composed of potassium and calcium. Generally, smaller size, higher solvent ratio, higher temperature and higher time of liquefaction lead to higher liquefaction. The highest percentage of liquefaction was 95% which is better than most of the lignocellulosic materials tested before.
  • Extração de compostos fenólicos de caroço de cereja
    Publication . Dulyanska, Yuliya; Guiné, Raquel P. F.; valente, Luisa; Esteves, Bruno; Ferreira, José; Domingos, Idalina; Correia, Paula; Ferreira, Manuela; Fragata, Anabela; Cardoso, Ana Paula; Barroca, Maria João; Silva, Aida Moreira; Lima, M. J.
    Os resíduos agroalimentares provaram ser um biorecurso que pode ser usado para obter uma variedade de materiais, ingredientes e produtos químicos valiosos. Neste trabalho foram testadas as condições ótimas para extração de compostos bioativos dos caroços de cereja com diferentes solventes e temperaturas. Os critérios escolhidos basearam-se na capacidade de extração mais eficiente, buscando técnicas mais limpas e com menor impacto no meio ambiente. Alguns solventes de extração foram testados em diferentes combinações e temperaturas. Os extratos obtidos foram avaliados utilizando métodos espectrofotométricos quanto a compostos fenólicos totais, bem como algumas famílias de compostos fenólicos. Os resultados obtidos mostraram que a maior extração de compostos fenólicos totais foi a 70°C com razão água:etanol de 60:40 (% v/v) (2,65 mg GAE/g), enquanto os máximos resultados para flavonoides foram obtidos a 80°C e solução aquosa etanólica 50% (7,26 mg QE/g). O maior valor para orto-difenóis foi de 21,47 mg GAE/g para 50°C e solução água:etanol 50:50. As maiores quantidades de proantocianidinas e flavonóis foram obtidas para solução 50:50 a 70 °C (6,43 mg CE/g e 3,88 mg QE/g, respetivamente), enquanto a mesma solução a 80 °C permitiu obter o máximo de ácidos fenólicos (1,68 mg CAE/ g). A extração de antocianinas varia significativamente com a concentração e temperatura, sendo mais alta na faixa de 35-40 °C, quando se utiliza uma solução de água:etanol 80:20. Em conclusão, verificou-se que os extratos de caroços de cereja obtidos possuem compostos bioativos relevantes com aplicações nas indústrias alimentícia, farmacêutica ou cosmética.
  • Valorization of Arbutus unedo L. Bark Through Chemical Composition Analysis, Liquefaction, and Bio-Based Foam Production
    Publication . Cruz-Lopes, Luísa; Dulyanska, Yuliya; Lopes, Rogério; Domingos, idalina; Ferreira, José; Esteves, Bruno
    Arbutus unedo (strawberry tree) is a small Mediterranean tree capable of vigorous regrowth after disturbances like fire. Traditionally used for biomass fuel, its bark and branches hold potential for higher-value products through ecovalorization into liquid mixtures that could replace petroleum-based materials. This study aimed to explore the chemical composition of various components of Arbutus unedo and to produce a liquefied material from its internal (IB) and external bark (EB). Chemical compositions of internal and external bark were determined using TAPPI standards including ash, extractive content, lignin, and cellulose. Metal cations were analyzed by ICP. Liquefaction of bark was optimized in a PARR reactor, evaluating factors such as particle size, temperature, and time, and the best polyols were monitored by FTIR-ATR. Polyurethane foams were made with internal and external bark materials liquefied by polymerization with isocyanate, a catalyst, and water as a blowing agent. Results showed that EB has a higher extractive and lignin content, while IB contains more cellulose. Liquefaction yields were higher for IB (74%) than EB (68%), with IB yielding polyols that produced stronger and more resilient foams with higher compressive strength and modulus of elasticity. Mechanical properties of the foams were influenced by the NCO/OH ratio and catalyst levels. Overall, the internal bark demonstrated superior performance for foam production, highlighting its potential as an eco-friendly alternative to petroleum-derived materials.
  • FTIR Monitoring of Polyurethane Foams Derived from Acid-Liquefied and Base-Liquefied Polyols
    Publication . Dulyanska, Yuliya; Cruz-Lopes, Luísa; Esteves, Bruno; Guiné, Raquel; Domingos, Idalina
    Polyalcohol liquefaction can be performed by acid or base catalysis, producing polyols with different properties. This study compared the mechanical properties of foams produced using polyols from liquefied Cytisus scoparius obtained by acid and base catalysis and using two different foam catalysts. The differences were monitored using FTIR analysis. Acid-catalyzed liquefaction yielded 95.1%, with the resultant polyol having an OH index of 1081 mg KOH/g, while base catalysis yielded 82.5%, with a similar OH index of 1070 mg KOH/g. Generally, compressive strength with dibutyltin dilaurate (DBTDL) ranged from 16 to 31 kPa (acid-liquefied polyol) and 12 to 21 kPa (base-liquefied polyol), while with stannous octoate (TIN), it ranged from 17 to 42 kPa (acid) and 29 to 68 kPa (base). Increasing water content generally decreased the compressive modulus and strength of the foams. Higher water content led to a higher absorption at 1670 cm−1 in the FTIR spectrum due to the formation of urea. Higher isocyanate indices generally improved compressive strength, but high amounts led to unreacted isocyanate that could be seen by a higher absorption at 2265 cm−1 and 3290 cm−1. DBTL was shown to be the best foam catalyst due to higher trimer conversion seen in the spectra by a higher absorption at 1410 cm−1. Acid- and base-derived polyols lead to different polyurethane foams with different FTIR spectra, particularly with a higher absorption at 1670 cm−1 for foams from acid-derived liquefaction.
  • Eco Valorization of Eucalyptus globulus Bark and Branches through Liquefaction
    Publication . Fernandes, Ana Paula; Cruz-Lopes, Luísa; Dulyanska, Yuliya; Domingos, Idalina; Ferreira, José; Evtuguin, Dimitri; Esteves, Bruno
    Eucalyptus globulus forest residues, bark, and branches, were characterized by wet chemistry methods and involved in the liquefaction process using a glycerol-ethylene glycol reaction mixture (1:1, v/v) catalyzed by strong mineral acid (3% H2SO4) or strong mineral base (6% KOH). The effect of the reaction conditions (temperature and duration) and the particle size on the yield of liquefied products have been evaluated. Acid catalysis revealed remarkably higher yields (25–50%) than when using basic catalyst. It was considered that bark was more vulnerable to liquefaction with respect to particle size than branches. Too high temperatures (>180 °C) are not advantageous regarding the liquefaction yields and, therefore, temperatures around 160–180 °C would be preferable. The best yield for the bark sample (>80 mesh fraction) was obtained at 180 °C for 60 min (61.6%), while for the branches the best yield was obtained at 160 °C for 60 min (62.2%). Under compromised conditions (180 °C for 60 min), the fine fraction (>80 mesh) of bark and branches did not show significant differences between their liquefaction yields and can be processed together while adjusting the suitable processing time. The main advantage of the use of these residues instead of solid wood is that it would bring the Forest managing companies a much higher income for their wastes that are usually burned and the use of lignocellulosic materials in detriment of petroleum-based materials for the production of polymers would make industry less dependent on oil prices fluctuations.
  • Influence of Pre-Hydrolysis on the Chemical Composition of Prunus avium Cherry Seeds
    Publication . Cruz-Lopes, Luísa; Dulyanska, Yuliya; Domingos, Idalina; Ferreira, José; Fragata, Anabela; Guiné, Raquel; Esteves, Bruno
    During the industrial processing of sweet cherry fruits, the seeds are considered agricultural waste and must be disposed of, typically through burning. In this context, it is intended to contribute to the scientific development of the ecovalorization of by-products and to provide new strategies for their transformation into value-added products obtained from sweet cherry seeds (SCS). This work aimed to establish the chemical characterization of SCS before and after several pre-hydrolysis steps in order to allow the solubilization of hemicelluloses that can later be used for the recovery of sugars. The higher percentage of cellulose and lignin remaining in the solid phase will allow its further processing for an integral valorization of the raw material. The temperature (160 and 170 °C) and time (0 and 180 min) of pre-hydrolysis were optimized to obtain the best liquefaction. The percentage of liquefied material was determined from the solid waste obtained at the time of filtration. The best liquefaction by the hydrolysis of SCS was obtained at 170 °C and 180 min, with a yield of 26.7%. The chemical analyses of SCS throughout hydrolysis showed the solubilization of hemicelluloses with increases in the time and temperature of the reactor. α-cellulose and lignin showed an increase both with temperature and time, increasing the material’s potential for further processing in adhesives. FTIR analysis showed that there were significant changes in the spectra between the initial SCS, the solid residue, and the liquefied material. Pre-hydrolysis was proven to be an efficient process to improve the chemical composition of the material for further processing into adhesives or higher-mechanical-strength polyurethane foams